Congenital hyperinsulinism and glucose hypersensitivity in homozygous and heterozygous carriers of Kir6.2 (KCNJ11) mutation V290M mutation: K_{ATP} channel inactivation mechanism and clinical management

*K. J. L. and A. A. contributed equally

(1) Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110; (2) Department of Pediatrics, 3341 MBRB, UNC School of Medicine, Chapel Hill, NC 27599; (3) Unit of Metabolic Diseases, Department of Pediatrics, Bambino Gesù Children’s Hospital, Rome, Italy; (4) Unit of Nuclear Medicine, Department of Radiology, Bambino Gesù Children’s Hospital, Rome, Italy; (5) Department of Nuclear Medicine, Catholic University of the Sacred Heart, Rome, Italy; (6) Dept. of Surgery, Bambino Gesù Children’s Hospital, Rome, Italy; (7) Laboratory of Monogenic Diabetes, Bambino Gesù Children's Hospital IRCCS, Rome, Italy; (8) Dept. of Internal Medicine, University of Tor Vergata, and Laboratory of Monogenic Diabetes, Bambino Gesù Children's Hospital IRCCS, Rome.

Running title: Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

Address correspondence and reprint requests to:
Colin G. Nichols
cnichols@wustl.edu
or
Fabrizio Barbetti
mody.2@libero.it

Submitted 22 May 2010 and accepted 15 October 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective: The ATP-sensitive K⁺-channel (K_{ATP}) controls insulin secretion from the islet. Gain- or loss-of-function mutations in channel subunits underlie human neonatal diabetes mellitus (NDM) and congenital hyperinsulinism (HI), respectively. In this study we sought to identify the mechanistic basis of K_{ATP}-induced HI in two probands, and characterize the clinical course.

Research Design and Methods: We analyzed HI in two probands and characterized the course of clinical treatment in each, as well as properties of mutant K_{ATP} channels expressed in COSm6 cells using Rb efflux and patch-clamp methods.

Results: We identified mutation V290M in the pore-forming Kir6.2 subunit in each proband. In vitro expression in COSm6 cells supports the mutation resulting in an inactivating phenotype, which leads to significantly reduced activity in intact cells when expressed homomerically, and to a lesser extent when expressed heteromerically with WT subunits. In one heterozygous proband, fluoro-DOPA scan revealed a causal focal lesion, indicating uniparental disomy with loss of heterozygosity. In a second family, the proband, homozygous for the mutation, was diagnosed with severe diazoxide-unresponsive hyperinsulinism at 2 weeks of age. The patient continues to be treated successfully with octreotide and amlodipine. The parents and a male sibling are heterozygous carriers without overt clinical HI. Interestingly, both the mother and the sibling exhibit evidence of abnormally enhanced glucose tolerance.

Conclusions: V290M results in inactivating K_{ATP} channels that underlies HI. Homozygous individuals may be managed medically, without pancreatectomy. Heterozygous carriers also show evidence of enhanced glucose sensitivity, consistent with incomplete loss of K_{ATP} channel activity.

Importantly, the V290M mutation is present in the homozygous state in one of the HI-affected probands, and is heterozygous in the unaffected parents and one sibling. Oral glucose tolerance tests on the heterozygous mother and sibling suggest hyper-responsivity in both individuals.

MATERIALS AND METHODS

Genetics and Molecular Biology. Genomic DNA was isolated from whole blood using the DNeasy Tissue Isolation kit (Qiagen, Valencia, CA, USA). KCNJ11 was amplified by PCR and directly sequenced. The identified V290M mutation was engineered into mouse Kir6.2 cDNA in pCMV6B using the Quikchange site-directed mutagenesis kit (Stratagene, La Jolla, CA), and confirmed by direct sequencing.
Clinical studies. Oral Glucose Tolerance Testing (OGTT) D-glucose was given orally and blood drawn via peripheral IV at baseline and then at hourly intervals. Samples were assayed for serum glucose, insulin, and proinsulin at the Mayo Clinical Laboratory (Rochester, MN). For the mother, the glucose load (Glucola) was 75g. For the sibling child, the load was 1g/kg, and the duration of the OGTT was truncated to 3 hours due to age. Of note, behavioral changes (e.g., hunger, lethargy) that often followed a meal were reported for the sibling. Given that heterozygous K\textsubscript{ATP} channel mutations have been identified in patients with HI (6), the mother requested testing for her and her son. This case report was submitted to the IRB at UNC and declared “exempt”.

Continuous Glucose Monitoring System (CGMS) Due to parental wishes to decrease the frequency of Octreotide injections, medical therapy was adjusted while monitoring under CGMS as an off-label use. A sensor was placed on three separate occasions for Proband #1 (CareLink(TM), Medtronic MiniMed, Inc) after application of topical anesthetic. Medtronic (Caremark) provided training to the parents on use and how to mark events such as medication and meals, as well as to corroborate hypo- (sensor set at <80) or hyperglycemic (>200) events detected by external blood glucose meter. Reference ranges were chosen for the alarm settings to avoid hypoglycemia and minimize glycosuria, as well as avoid excessive fingersticks for the child. Sensors were placed for a maximum of 5 days and corresponded to periods when treated with (1) Octreotide alone, or (2) Octreotide + Amlodipine. Of note, the child was tapered off amlodipine while on CGMS for a period of 2 weeks. After monitoring with Octreotide alone, amlodipine (0.1mg/kg divided twice daily) was re-introduced for 5 days prior to CGMS testing. Baseline glucose levels and excursions (high and low) were documented on a continuous basis to evaluate the safety and efficacy of the two treatment regimens.

Fluoro-DOPA analysis of pancreas. \(^{18}\text{F}-\text{L-DOPA PET-CT study}\) (4 MBq/kg of \(^{18}\text{F}-\text{L-DOPA administered intravenously 45 minutes before acquisition}\)) was performed using a hybrid machine (Gemini GXL, Philips Medical Systems). PET scan was performed under general anesthesia and glucose infusion to maintain normoglycemia, after 6h-fasting, without stopping medications.

Expression of K\textsubscript{ATP} channels in COSm6 cells. COSm6 cells were cultured in Dulbecco’s Modified Eagle Medium plus 10 mM glucose (DMEM-HG), supplemented with fetal calf serum (FCS, 10%). Cells were transfected with cDNA using FuGENE 6 Transfection Reagent (Roche Diagnostics, Indianapolis, IN), and then plated on sterile glass coverslips overnight prior to patch-clamp experiments.

Electrophysiological methods. Patch-clamp experiments were performed at room temperature on COSm6 cells that fluoresced green under UV illumination, 3-5 days post-transfection. Membrane patches were voltage-clamped using an Axopatch 1-D amplifier (Axon Instruments, Union City, CA). All currents were measured at a membrane potential of -50mV. Data were collected using the pClamp8.2 software suite (Axon Instruments, Union City, CA) and Microsoft Excel. Bath and pipette control solutions (K\textsubscript{INT}) contained (mM): 150 KCl, 10 HEPES, and 1 EGTA (pH 7.4). Where indicated, ATP was added to the bathing solution as dipotassium salts. Tolbutamide was dissolved in K\textsubscript{INT} from a 100 mM stock solution in 100 mM KOH.

Macroscopic \(^{86}\text{Rb}+ efflux assays. COSm6 cells in 12-well plates were incubated for 24 hr in culture medium containing \(^{86}\text{RbCl}\) (1 µCi/mL) 2 days after transfection. Cells were washed twice with Ringer’s solution (Basal) (in mM: 118 NaCl, 2.5 CaCl\textsubscript{2}, 1.2 KH\textsubscript{2}PO\textsubscript{4}, 4.7 KCl, 25 NaHCO\textsubscript{3}, 1.2 MgSO\textsubscript{4}, 10 HEPES; pH 7.4) with or without metabolic inhibition (MI)(1 mM 2-
Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

dehy-D-glucose and 2.5 µg/mL oligomycin). At selected time points, solution was removed and replaced with fresh solution; after completion of the assay, cells were lysed with 1% SDS and removed. Collected samples were assayed in a scintillation solution. Raw data is shown as percent 86Rb$^+$ efflux relative to total counts.

The rate constant of K_{ATP}-specific 86Rb$^+$ efflux (k_2) was obtained by fitting a single-exponential equation:

$$\text{Relative flux} = 1 - \exp \left[-(k_1 + k_2) \times t \right]$$

(Eq. 1)

where apparent rate constant for nonspecific efflux (k_1) was obtained from untransfected cells. Glibenclamide was added to Ringer’s solution plus metabolic inhibition from a 1 mM stock solution in DMSO. Results are presented as mean ± s.e.m. (standard error of the mean). Statistical tests and p-values are noted in figure legends where appropriate.

Estimation of P_o,zero using Noise Analysis. Mean P_o,zero was estimated from stationary fluctuation analysis of macroscopic currents in isolated membrane patches (10;11). Short (<1 s) recordings of currents were analyzed in zero [ATP] and in 5 mM [ATP] (for estimation of ATP-independent noise). Currents were filtered at 1 kHz and digitized at 3 kHz with 12-bit resolution. Mean patch current (I), and variance (σ) in the absence of ATP were obtained by subtraction of mean current and variance in 5 mM ATP (i.e. assuming all channels fully closed). Single channel current (i) was assumed to be -3.75 pA at -50 mV, corresponding to WT single channel conductance of 75 pS (12). P_o,zero was then estimated from the following equation:

$$P_o$,zero = 1 - [$\sigma^2$/(i * I)].

(Eq. 2)

Quantitative analysis of ATP inhibition. The ATP dose-response was quantified by fitting the raw data with a Hill equation:

$$I_{rel} = \frac{100}{1 + \left(\frac{[\text{ATP}]}{k_{1/2}} \right)^H}$$

(Eq. 3)

where I_{rel} is the current relative to that in the absence of ATP, [ATP] is the ATP concentration, $k_{1/2}$ is the half-maximal inhibitory ATP concentration, H is the Hill coefficient which was fixed at 1.3.

Immunoblotting. 48 hours post transfection, cells were washed twice with cold PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na$_2$HPO$_4$, 2 mM KH$_2$PO$_4$) and then incubated at 4ºC, in 300 µL of lysis buffer (150 mM NaCl, 20 mM HEPES, 10 mM EDTA, 1% NP-40, one “Complete Mini” protease inhibitor [Roche Diagnostics, Indianapolis, IN] per 10 mL at pH 7). Lysates were centrifuged for 5 minutes at 13,000 rpm in 4ºC and then transferred to clean microcentrifuge tubes, resolved with SDS-PAGE (7.5% acrylamide) and transferred to PVDF membranes pre-soaked in methanol. Filters were blocked overnight in TBS-T buffer (200 mM NaCl, 20 mM Tris-HCl, 0.1% Tween, pH 7.4) plus 5% nonfat dry milk at 4ºC. Filters were incubated and rocked for 1 hour in a 1:1000 dilution of anti-SUR1 antibody (affinity-purified from rabbit) in TBS-T plus 5% nonfat dry milk at 4ºC. Filters were incubated and rocked for 1 hour in a 1:1000 dilution of anti-SUR1 antibody (affinity-purified from rabbit) in TBS-T plus 5% milk, washed three times for 5 minutes each in TBS-T, then bathed in 1:1000 dilution of secondary antibody (goat, anti-rabbit IgG, horseradish peroxidase linked, from Pierce) in TBS-T plus 5% milk. Filters were washed an additional 3x in TBS-T for 5 minutes each before appliance of an enhanced chemiluminescence system for detection of horseradish peroxidase (SuperSignal West Pico Chemiluminescent Substrate) and subsequent exposure to autoradiography film (Midwest Scientific, St. Louis, MO).

RESULTS

Genetic pedigree of HI in two separate families with V290M mutation. Fig. 1 shows available pedigrees for two families in which...
the neonatal probands were clinically diagnosed with HI. Proband 1 (female, gestation 38 weeks, birth weight (BW) 3.5 kg, 75-90th centile (13)) was referred by outside hospital (OSH) at 2 weeks for evaluation of persistent hypoglycemia (blood glucose <30 mg/dl), despite initiation of dextrose-containing intravenous fluids and diazoxide (15 mg/kg/d). Genotyping (Athena Diagnostics) identified homozygous V290M mutation in KCNJ11 in the proband, and heterozygous V290M in each of the unaffected mother (gestation 40 weeks, BW 3.9 kg, 75-90th centile), father (gestation 40 weeks, BW 4.5 kg, 95-97th centile), and male sibling (gestation 35 weeks, BW 3.0 kg, 75-90th centile), but not in an unaffected male sibling (gestation 36 weeks, BW 2.7 kg, 25-50th centile). Additional sequencing revealed no coding mutations in GCK, GLUD1 or ABCC8 genes in the proband. The ancestors of the mother and father came from the same small town in Germany, suggesting the same founder mutations. There is a family history of Type 2 diabetes in two maternal great aunts and a paternal great-grandmother, but no family history of frank hypoglycemia.

Proband 2 was a female born at 38 weeks gestation (BW 3.4 kg, 75-90th centile) to an Italian family, and had the first episode of hypoglycemia at day of life (DOL) #2 (blood glucose 29 mg/dl, treated with glucose infusion). She was referred at 8 weeks to Bambino Gesù Pediatric Hospital for diffuse cyanosis and tremor; plasma glucose was 40 mg/dl with simultaneously elevated insulin of 215 pMol/l and low free fatty acids (220 mmol/l). Diazoxide therapy (15 mg/kg/d) was started, then tapered to 4 mg/kg/d. Genotyping identified heterozygous V290M mutation in KCNJ11, in both the proband and the apparently unaffected father (not available for further testing). Additional sequencing of proband DNA revealed no coding mutations in ABCC8, GCK or HNF4α genes.

Variable clinical presentation. Shortly after birth, proband 1 developed cyanosis, blood glucose <20 mg/dL, and was transferred to neonatal intensive care at an outside hospital (OSH). The presence of a heart murmur on DOL #2 prompted an echocardiogram (ECHO) that detected a small patent ductus arteriosus which resolved spontaneously. Despite frequent breast-feeding, supplemental and intravenous feeds, hypoglycemic episodes (<30 mg/dL) continued. Diazoxide treatment was initiated at 15mg/kg/day on DOL #10. Laboratory assessment prior to initiation of diazoxide revealed insulin levels (56, 70 pmol/l) on two occasions when blood glucose <40 mg/dL. Pituitary testing at the time of hypoglycemia showed intact counterregulatory responses (not shown). In family 2, both the proband and the father carry the V290M mutation in KCNJ11, yet only the proband suffers from HI. Lack of mutations in other candidate genes suggested paternal uniparental disomy with loss of heterozygosity of the maternal allele, characteristic of focal HI (14). Fluoro-DOPA scanning (Fig. 1B), provided clear evidence of a focal lesion in the body of the pancreas. Extemporaneous histological examination performed during surgery revealed focal adenomatous hyperplasia of islet cells, prompting complete excision of the lesion, effectively curing the patient and providing further corroborative evidence of focal hyperinsulinism.

Clinical course and treatment experience in Proband 1. At DOL #16, proband 1 was transferred to UNC Children’s Hospital. Blood glucose was <40 mg/dL and the patient was still receiving diazoxide. In addition, repeat insulin level was 42 pMol/l with blood glucose of 38 mg/dL. She was started on subcutaneous Octreotide (4 μg/kg/day given in divided doses every 8 hours). Due to persistent hypoglycemia and concomitant tachyphylaxis commonly found with Octreotide (15), dosing was increased steadily
Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in \textit{KCNJ11}

to 12 μg/kg/day (divided doses every 6 hours). Diazoxide was tapered off, with fasting blood glucose maintained >60 mg/dL. On DOL #21, ECHO revealed systolic murmur, mild/moderate left ventricular hypertrophy (LVH), and mild hypertension for age (blood pressure (BP) 80-90 mm Hg (systolic)/30-40 mm Hg (diastolic)). Consequently, amlodipine (0.1 mg/kg/d given in divided dosing twice daily orally) was initiated to treat both LVH and associated hypertension. Repeat ECHO at DOL #46 was normal.

\textbf{CGMS Evaluation.} The patient is currently 6 years old with normal HbA1c (5.6%), IGF-1 (123 ng/mL) and IGF-BP3 (4.3 μg/mL), and serum insulin (119 pMol/l) at ambient glucose of 78 mg/dl. Growth is steady between the 25-50\%ile on Octreotide (now 8 μg/kg/day divided 4 times daily). Historically, she was allowed to outgrow her amlodipine. Due to desire to decrease the number of frequency of injections, re-introduction of amlodipine was evaluated systematically using Continuous Glucose Monitoring (CGMS, Medtronic CareLink®, see Methods).

Given long-standing debate as to usefulness of calcium channel antagonists in HI treatment (16;17), CGMS also permitted ascertaining response to amlodipine, which may inhibit insulin release through direct inhibition of β-cell calcium channels (18), and/or via inhibition of these channels through decreases in cyclic AMP (19). Additive effects of amlodipine plus octreotide, would therefore be expected to help to minimize peak/trough effects of each individual agent. As shown in Fig. 1C, Octreotide alone maintained average blood glucose levels in the desired range, but marked excursions were still present, with episodes >300 mg/dl. There was only 1 episode of blood glucose <60 mg/dl in >3000 sensor readings (see Figure 1B). Following introduction of Amlodipine, baseline mean blood glucose rose and stabilized at a higher level than with Octreotide alone and the there were no episodes of blood glucose levels <60 mg/dL in the presence of Octreotide + Amlodipine. Subsequent introduction of bedtime cornstarch further improved control without dangerous excursions but was not tolerated due to typical side effects of bloating and abdominal discomfort, and was discontinued.

\textbf{Effect of V290M mutation on K_{ATP} channels expressed in COSm6 cells.} To examine mutation effects on K_{ATP} channel activity, we measured 86Rb$^+$ efflux across the plasma membrane of COSm6 cells co-transfected with SUR1, and WT Kir6.2, Kir6.2[V290M], or 1:1 mixture of these subunits. Efflux curves were fit with the two-pathway model (see Methods), untransfected cells providing the efflux rate (k_1) for the non-K_{ATP} pathway. Homomeric Kir6.2[V290M] (M/M) channels show considerably reduced 86Rb efflux rates, with k_2 reduced by \sim80\% under metabolically inhibited or diazoxide stimulated conditions (Figure 2). Cells expressing heteromeric WT+V290M (V/M) channels show intermediate efflux rates (k_2, reduced by \sim50\%) (Figure 2B). These data confirm that the V290M mutation results in reduced K_{ATP} channel activity in intact cells, and predicts that insulin hyper-secretion will be seen in vivo for heterozygous carriers, and more severely so in the homozygous state.

\textbf{Inactivating phenotype of V290M channels.} Lysates of COSm6 cells expressing recombinant channels were assayed by immunoblotting (Fig. 3A). Anti-SUR1 blots show a doublet at \sim170kDa, corresponding to SUR1 protein, with a similar fraction of complex-glycosylated SUR1 to WT, indicating that the lower activity observed in V290M channels is not due to reduced channel density at the surface of the plasma membrane.

The activity of WT and mutant K_{ATP} channels was further examined in inside-out membrane patch-clamp experiments (Figs. 3-5). Upon
membrane excision, WT channels typically open to a steady state level, with open probability of 0.3-0.5 (20). In marked contrast, V290M channels open, but then exhibit a rapid decay in macroscopic current, typically resulting in much smaller steady state currents than is observed in WT channels. Following patch excision, V290M channels inactivated with time constant of 2.0 ± 0.5 secs (n=5), while WT channels showed essentially no inactivation following excision (Fig. 3B). Steady-state ATP sensitivity of V290M channels was similar to WT (Fig. 4A,C), but current density was considerably lower than WT (Fig. 4B), reflecting the dramatic inactivation that occurs. Physiologically, the major determinant of channel activation is stimulation by Mg-nucleotides and, as shown in Fig. 4D, MgADP activation is intact in V290M channels, although inactivation follows the MgADP activation, reducing steady-state currents in MgADP.

PIP₂ rescues channels from the inactivated state. Following patch excision, exogenously applied phosphatidylinositol bisphosphate (PIP₂) incorporates into the membrane inner leaflet, and typically increases activity of WT channels by 2-3 fold, as a result of increased open state stability (21;22) (Fig. 5). Following inactivation to steady state levels, application of PIP₂ to V290M patches caused much greater relative increase in current (~50-fold) to 1902.58 ± 560.63 pA (n=8), similar to the WT patch current on excision. During PIP₂ exposure, inactivation became progressively slower and less complete in response to application and removal of ATP (Fig. 5B). During this process, the rate and extent of inactivation both decreased in correlation with the estimated open probability (Po) (Figure 6A) as expected for an inactivation process occurring from the closed state (see Discussion).

OGTT evaluation in heterozygous carriers in family 1. In mouse models of reduced Kₐ₅₃ conductance, even 50% reduction is sufficient to cause enhanced glucose tolerance and hypersecretion of insulin (23;24). Given that heteromeric V290M/WT channels exhibit ~50% reduction of Kₐ₅₃ conductance (Figure 2), and the anecdotal evidence of hypersensitivity to glucose exhibited by the proband’s brother, we pursued oral glucose tolerance (OGTT) testing in the mother (Table 1) and the brother (Table 2), both of whom are heterozygous for the V290M mutation. Blood glucose in normal adults will be below 200mg/dL at 1 hour and below 140mg/dL at 2 hours and in normal children was reported to be 103+ 21mg/dl at 1 hour (25). Even though neither mother nor brother display overt HI under fed conditions, glucose was close to fasting levels in both at 1 hour, and even lower at 2 hours, suggestive of a “supranormal” response. Proinsulin levels rose during the OGTT, and although within reported ranges for normal subjects (26), proinsulin:insulin ratios at 1 and 2 hours are above normal range for young individuals (26).

DISCUSSION

Molecular basis of hyperinsulinism associated with Kir6.2[V290M] mutation. We describe two unrelated families with the Kir6.2[V290M] mutation. By recombinant expression of wild type or V290M mutant Kir6.2 subunits, we show that the mutation results in partial loss of Kₐ₅₃ channel activity in the heterozygous case, and more severe loss in the homozygous case (Fig. 2). The loss of function results from induction of an inactivation phenomenon (Fig. 3B), similar to that resulting from HI-associated mutations at Kir6.2 residue R301 (27). These mutations resulted in both loss of functional membrane channels, as well as an inactivating phenotype. The V290M mutation appears to reduce channel activity solely through induction of inactivation, since surface expression appears normal (Fig. 3A). Structural analysis suggests that V290 participates in the
generation of an inter-subunit salt bridge involving R301 and E290 (Fig. 3C). We suggest that V290M and R301 mutations induce the same inactivating phenotype by destabilizing this salt bridge, causing the channel to enter a long-lived inactivated state after closure in the absence of ATP. The observed relationship between $K_{1/2,ATP}$ and P_o is an emergent property of gating schemes in which ATP preferentially stabilizes the closed state of the channel (28), and loss of inactivation paralleling increase in open state stability with PIP_2 is then predicted by the assumption that inactivation occurs from the unliganded closed state (Figure 6B).

Variable presentation of hyperinsulinism associated with Kir6.2[V290M] mutation. In family 1, HI in the neonatal period is clearly associated with the homozygous condition. In the proband of family 2, the mutation presents in a focal lesion with loss of heterozygosity. K_{ATP} channel activity reduction is graded from the heteromeric to the homomeric expression, with severe (>80%) loss in the homomeric case; this is consistent with the clinical HI phenotype of these two probands. In the heterozygous case, reduction of channel activity is ~50%. Previous extensive studies of animal models of genetic suppression of K_{ATP} activity predict that such a reduction is sufficient to cause glucose hyper-responsivity, with left-shifted glucose-dependence of insulin secretion, but unaltered basal secretion (29;30;31). The relevance of this to humans has remained unclear, but seems a reasonable explanation for the apparent glucose hyper-responsivity of the two carrier relatives in family 2. In this regard, it is notable that the affected probands in each family and the three unaffected heterozygous carriers in family 1 were at the upper range of normal birthweights, and large relative to the unaffected sibling. The anecdotal observation of the mother in family 1 that the 4-year old heterozygous carrier child can become hungry and/or lethargic after eating might reflect postprandial hypoglycemia, and may warrant caution during meals and/or modification of meal carbohydrate composition for such individuals. There are few published studies focusing on heterozygous carriers of HI mutations. Huopio et al. (32) reported that carriers of the SUR1 V187D mutation had normal glucose tolerance and insulin secretory capacity. However, V187D reduces K_{ATP} channel activity by affecting trafficking to the surface membrane, and this is readily reversible, even simply by exposure to sulfonylureas (33), and it is unclear whether the presence of even a single wild-type subunit might be sufficient for normal trafficking in the heterozygous case, such that there is minimal effect on K_{ATP} density in heterozygous carriers. Otherwise, for recessive loss of function HI mutations that do cause reduction in channel density in the heterozygous case, it seems that glucose hyper-responsivity might be a feature, although clearly this requires further study in bigger cohorts.

There are now several reports of patients with hyperinsulinism due to loss-of-function (LOF) K_{ATP} mutations ‘crossing-over’ to diabetes in later life, including heterozygous carriers of SUR1 mutations (34;35). Again, this is predicted from mouse models of loss of K_{ATP} activity (36;37), which become glucose-intolerant as adults, and diabetic on high fat diets. It is notable that the proinsulin:insulin levels in the Het carriers were in the normal range (0.1-0.2) in the fasted state, and fell appropriately in the first hour of the OGTT, but then rose to relatively higher levels at 2 and 3 hours than has been reported for normal young subjects, and reminiscent of the elevated ratios seen in Type 2 diabetics (26;38). Conceivably, this apparently elevated proinsulin:insulin ratio reflects β-cell ‘overwork’ and might be a harbinger of a tendency to ‘crossover’ in later life.

Treatment options for K_{ATP}-dependent HI. Standard treatment options for HI are
essentially limited to diazoxide (activating K\textsubscript{ATP} and suppress insulin secretion), or octreotide (long-acting somatostatin analog suppressing glucose actions on the beta-cell), glucagon (counter-regulator to insulin), or subtotal pancreatectomy (17;39;40;41). L-type (DHP-sensitive, Ca\textsubscript{v}1) channel blockers are mechanistically an attractive option to directly modulate insulin secretion. Previous results have been mixed (16;42), but some patients have achieved stable blood sugar levels on nifedipine monotherapy. In the present case, improvement in both LVH and hypertension in addition to hypoglycemia are shown in a neonate on both amlodipine and octreotide. The contribution of amlodipine to blood glucose was assessed more directly using CGMS when the proband became of school-age. The main finding was a rise in basal glucose levels with no values below 70 mg/dL while on the same dose of octreotide in the presence of amlodipine. Given its mechanism of Ca\textsubscript{v}1 channel inhibition, this finding is not surprising and supports the results of Aynsley Green et al. (43). In the present case, amlodipine also permitted extension of octreotide dosing from every 6- to every 8-hours, thereby saving one injection daily (a significant improvement in quality of life).

A key clinical management question for HI is whether to pursue medical or surgical therapy. Long-term medical therapy, as in this case, presents a less expensive option than subtotal pancreatectomy, the procedure that would be indicated by the mutation and mode of inheritance. In addition, excellent glucose control, normal growth and development and the variable risk of postsurgical diabetes, all support this management to date for this child. Moreover, glucose levels normalize and medical therapy can be stopped at some point for many HI children (42;44;45;46), whereas patients who undergo major resection of the pancreas will tend to develop diabetes at or around puberty, another consideration when assessing the pros and cons of surgical versus medical management.

CONCLUSIONS

We report hyperinsulinism due to a K\textsubscript{ATP} mutation that results in an inactivating channel, in two different families. A homozygous affected child is well controlled with medical therapy without surgery. Clinically unaffected heterozygous carriers show signs of hypersecretion, and we suggest that these may represent an unappreciated cohort with subclinical features.

Author Contributions: K.J.L., A.A., J.C.K. researched data, wrote manuscript; H.T.K., C. D-V., A.M., M.P., V.R., J.deV.deG., C.C. researched data; F.B., C.G.N. wrote manuscript.

ACKNOWLEDGEMENTS

This work was supported by National Institutes of Health Grant DK69445 (to CGN). FB is a member of the Early Onset Diabetes Study Group of the Italian Society of Pediatric Endocrinology and Diabetology (SIEDP). We would like to thank Medtronic for both clinical and technical support during the use of CGMS monitoring for the second subject. Humanstudies for the second patient and family were carried out under IRB “exempt” category at UNC (KJL).

REFERENCES

Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

16. Muller D, Zimmering M, Roehr CC: Should nifedipine be used to counter low blood sugar levels in children with persistent hyperinsulinaemic hypoglycaemia? Arch Dis Child 89:83-85, 2004

Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

Table 1. OGTT in Heterozygous Mother

<table>
<thead>
<tr>
<th>Time</th>
<th>serum glucose (mg/dL)</th>
<th>insulin (pmol/L)</th>
<th>proinsulin (pmol/L)</th>
<th>proinsulin/insulin ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>82</td>
<td>40.6</td>
<td>3.4</td>
<td>0.083744</td>
</tr>
<tr>
<td>t=1 hour</td>
<td>75</td>
<td>350</td>
<td>17</td>
<td>0.048571</td>
</tr>
<tr>
<td>t=2 hour</td>
<td>74</td>
<td>133</td>
<td>13</td>
<td>0.097744</td>
</tr>
<tr>
<td>t=3 hour</td>
<td>63</td>
<td>14</td>
<td>6.7</td>
<td>0.478571</td>
</tr>
<tr>
<td>t=4 hour</td>
<td>72</td>
<td>9.1</td>
<td>4.7</td>
<td>0.516484</td>
</tr>
<tr>
<td>t=5 hour</td>
<td>73</td>
<td>6.3</td>
<td>3.1</td>
<td>0.492063</td>
</tr>
</tbody>
</table>

Table 2. OGTT in Heterozygous Brother

<table>
<thead>
<tr>
<th>Time</th>
<th>serum glucose (mg/dL)</th>
<th>insulin (pmol/L)</th>
<th>proinsulin (pmol/L)</th>
<th>proinsulin/insulin ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>77</td>
<td>35</td>
<td>4.2</td>
<td>0.12</td>
</tr>
<tr>
<td>t=1 hour</td>
<td>90</td>
<td>280</td>
<td>15</td>
<td>0.053571</td>
</tr>
<tr>
<td>t=2 hour</td>
<td>79</td>
<td>54.6</td>
<td>11</td>
<td>0.201465</td>
</tr>
<tr>
<td>t=3 hour</td>
<td>66</td>
<td>18.2</td>
<td>5.7</td>
<td>0.313187</td>
</tr>
</tbody>
</table>

FIGURE LEGENDS

Fig 1. V290M pedigrees and clinical responses to therapy (A) Arrow indicates the V290M proband in each case; black, grey and empty symbols indicate genetically homozygous, heterozygous, and unaffected individuals, respectively. (B) Results Fluoro-DOPA scan of proband 2 indicates focal lesion (yellow arrowheads) in the body of the pancreas. (C) Mean daily glucose levels and standard deviation, for final period on octreotide alone (8 mcg/kg/day divided every 6 hours), following switch to octreotide 8 mcg/kg/day divided every 6 hours plus amlodipine (0.1mg/kg/day divided every 12 hours). Gray area represents target range for alarm for CGMS (70-140 mg/dL glucose).

Fig. 2. Decreased K\textsubscript{ATP} activity in homomeric V290M channels and intermediate activity with heteromeric WT and V290M channels (A) Representative 86Rb+ efflux shown as cumulative counts relative to total counts as a function of time, under basal conditions, in the presence of metabolic inhibition, or the presence of K\textsubscript{ATP} channel opener diazoxide. (B) Data were fit to a single exponential and rate constants were obtained from untransfected cells, k\textsubscript{i}, for non- K\textsubscript{ATP} channel 86Rb+ leak and from transfected cells, k\textsubscript{i}, for K\textsubscript{ATP} channel-mediated 86Rb+ current. Graphs show compiled data (means +/- SEM) from a 4-6 experiments.

Figure 3. Molecular basis of loss of K\textsubscript{ATP} activity (A) Western blots of FLAG-tagged SUR1 (fSUR1) from COSm6 cells expressing fSUR1 alone, or co-expressing fSUR1 with either WT Kir6.2 or mutant Kir6.2[V290M]. The mature (cell-surface) complex-glycosylated and immature, core-glycosylated fSUR1 bands are indicated by upper and lower arrows, respectively. In the absence of Kir6.2, fSUR1 is exclusively core glycosylated. (B) Representative currents recorded by inside-out excised patch-clamp technique from COSm6 cells expressing WT or mutant V290M K\textsubscript{ATP} channels at -50mV membrane potential (+50mV pipette). Patches were excised from the cell (arrow) into zero ATP solution, then subsequently exposed to 5 mM ATP.
Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

(C) Structural model of Kir6.2 tetramer (47) indicates location of V290. R301 and E292 of adjacent Kir6.2 subunits form a salt bridge that is essential for channel function. V290 lies within 7 angstroms of R301 and mutations at this site may destabilize the intersubunit interface.

Figure 4. Mutant V290M channels have unaltered ATP-sensitivity and intact MgADP activation (A) Representative currents recorded by inside-out excised patch-clamp technique from COSm6 cells expressing WT or mutant V290M K\textsubscript{ATP} channels at -50mV membrane potential (+50mV pipette). Patches were exposed to different concentrations of ATP as indicated. (B) Mean steady state patch current following isolation (± s.e.m.). (C) Steady-state dependence of membrane current on ATP relative to current in the absence of ATP. Solid line represents mutant V290M channels while dashed line represents WT channels, fitted with the Hill equation by least-squares method. (D) Representative currents recorded by inside-out excised patch-clamp technique from COSm6 cells expressing WT or mutant V290M K\textsubscript{ATP} channels at -50mV membrane potential (+50mV pipette). Patches were exposed to different concentrations of ATP, and ADP (in the presence of 0.5 mM free Mg2+) as indicated.

Figure 5. Inactivation is PIP\textsubscript{2}-sensitive (A,B) Current recordings of COSm6 patches expressing WT (A) and mutant V290M (B) channels. In WT channels, the current approximately doubles following addition of PIP\textsubscript{2}. However, in V290M channels, steady-state channel activity increases several-fold, accompanied by a marked reduction in inactivation, following exposures to PIP\textsubscript{2}, a channel open-state stabilizer.

Figure 6. Kinetic mechanism of inactivation (A) Fraction of inactivating current (following ATP removal), versus steady state current (relative to maximal attained following repeat PIP\textsubscript{2} exposure – relative open probability) at selected timepoints following exposures to PIP\textsubscript{2} in V290M channels. Individual patches are indicated by different symbols, large symbol indicates starting values prior to first exposure to PIP\textsubscript{2}. (B) A 3-state model of channel activity (with an unliganded open and closed state, and with ATP binding to the closed state) is adequate to explain multiple features of K\textsubscript{ATP} gating (28;48;49). A fourth, inactivated, state (C\textsubscript{IN}) that is coupled to the unliganded closed state can explain both the phenomenon of inactivation, and the finding that PIP\textsubscript{2} (which acts to shift the KCO equilibrium towards the open state) both reduces and slows inactivation.
Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

Figure 1

A. Family 1 and Family 2 pedigrees.

B. Imaging of the focal lesion in the body of the pancreas and the bile duct.

C. Graph showing the effect of Octreotide (12 µg/kg/day) and Octreotide (12 µg/kg/day) + Amlodipine (0.05 mg/kg/day) on blood glucose levels over time.
Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in $KCNJ11$

Figure 3
Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

Figure 4

A

B

C

D

Figure 4

Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

Figure 4

Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

Figure 4

Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in KCNJ11

Figure 4
Hyperinsulinism and glucose hyper-responsivity resulting from inactivating mutation in *KCNJ11*

Figure 5

A

![Graph showing PIP₂ and ATP effects on current levels with 500pA and 5s markers.]

B

![Graph showing multiple PIP₂ and ATP applications with 1 nA and 1 min markers for V290M variant.]
Figure 6

A

B

\[
\begin{align*}
C_{\text{ATP}} & \xrightarrow{K_A} C & & \xrightarrow{K_{CO}} O \\
C_{\text{IN}} & \xleftarrow{K_{IN}} C_{\text{IN}}
\end{align*}
\]