Physical Activity Attenuates the Effect of Low Birth Weight on Insulin Resistance in Adolescents

Findings From Two Observational Studies

Francisco B. Ortega,1,2 Jonatan R. Ruiz,1,3 Anita Hurtig-Wennlöf,4 Aline Meirhaeghe,5 Marcela González-Gross,6 Luis A. Moreno,7 Dénes Molnar,8 Anthony Kafatos,9 Frederic Gottrand,10 Kurt Widhalm,11 Idoia Labayen,1,12 and Michael Sjöström1

OBJECTIVE—To examine whether physical activity influences the association between birth weight and insulin resistance in adolescents.

RESEARCH DESIGN AND METHODS—The study comprised adolescents who participated in two cross-sectional studies: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study (n = 520, 14.6 years old) and the Swedish part of the European Youth Heart Study (EYHS) (n = 269, 15.6 years old). Participants had valid data on birth weight (parental recall), BMI, sexual maturation, maternal education, breastfeeding, physical activity (accelerometry, counts/minute), fasting glucose, and insulin. Insulin resistance was assessed by homeostasis model assessment—insulin resistance (HOMA-IR). Maternal education level and breastfeeding duration were reported by the mothers.

RESULTS—There was a significant interaction of physical activity in the association between birth weight and HOMA-IR (logarithmically transformed) in both the HELENA study and the EYHS (P = 0.05 and P = 0.03, respectively), after adjusting for sex, age, sexual maturation, BMI, maternal education level, and breastfeeding duration. Stratified analyses by physical activity levels (below/above median) showed a borderline inverse association between birth weight and HOMA-IR in the low active group (standardized β = −0.094, P = 0.09, and standardized β = −0.156, P = 0.06, for HELENA and EYHS, respectively), whereas no evidence of association was found in the high active group (standardized β = −0.031, P = 0.62, and standardized β = 0.053, P = 0.55, for HELENA and EYHS, respectively).

CONCLUSIONS—Higher levels of physical activity may attenuate the adverse effects of low birth weight on insulin sensitivity in adolescents. More observational data, from larger and more powerful studies, are required to test these findings.

From the 1Unit for Preventive Nutrition, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; the 2Department of Physical Education and Sport, School of Physical Activity and Sport Sciences, University of Granada, Granada, Spain; the 3Department of Physical Education and Sport, School of Physical Activity and Sport Sciences, University of Granada, Granada, Spain; the 4School of Health and Medical Sciences/Clinical Medicine, Orebro University, Orebro, Sweden; the 5INSERM U744, Institut Pasteur de Lille, University Lille Nord de France, UDSL, Lille, France; the 6Department of Health and Human Performance, Faculty of Sciences of the University of the Basque Country, Vitoria, Spain; the 7GENUD (Growth, Exercise, Nutrition and Development) Research Group and School of Health Science (EUCS), Universidad de Zaragoza, Zaragoza, Spain; the 8Department of Pediatrics, Division of Clinical Nutrition, Medical University of Vienna, Vienna, Austria; and the 9Department of Nutrition and Food Science, University of the Basque Country, Vitoria, Spain.

Corresponding author: Francisco B. Ortega, ortega@ugr.es.

Received 1 December 2010 and accepted 26 May 2011.

DOI: 10.2337/db10-1670

This article contains Supplementary Data online at http://diabetes.diabetesjournals.orglookup/suppl/doi:10.2337/db10-1670/DC1.

© 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
the analyses did not differ from those not included in terms of birth weight, physical activity, and homeostasis model assessment–insulin resistance (HOMA-IR) (all \(P > 0.6 \)). In the EYHS, the adolescents included did not differ from those not included regarding birth weight and physical activity (both \(P > 0.7 \)), but they differed in HOMA-IR levels (2.0 \(\pm \) 0.9 vs. 2.3 \(\pm \) 1.3 for included vs. not included individuals, respectively; \(P < 0.01 \)).

Physical examination. Body weight and height were measured using standardized procedures, as previously described (10,11), and BMI was calculated as body weight (kg) divided by height (m) squared. Sexual maturation status was assessed during a medical examination by a trained medical staff (Tanner stages ranging from 1 to 5) according to Tanner and Whitehouse (12).

Newborn birth weight. Birth weight data were recalled by the parents. To note, in the EYHS, the validity of parents-reported birth weight data was previously verified in a randomly selected sample by comparing the reported data with measured birth weights from parent-held baby books directly obtained from hospital records (13).

Physical activity. Detailed descriptions of the assessment of physical activity in the HELENA study (14,15) and the EYHS (11) have been published elsewhere. Briefly, adolescents were asked to wear an accelerometer (Actigraph) for 7 or 4 consecutive days (HELENA and EYHS, respectively) during all waking hours, except for water-based activities. The time sampling interval (epoch) was set at 15 or 60 s, for the HELENA and EYHS, respectively.

Accelerometer data from all participants in both studies were analyzed centrally by the same research group (Karolinska Institute). At least 3 days of recording with a minimum of 8 or 10 h of registration per day, for the HELENA study and EYHS, respectively, were necessary to be included in the study. Routs of \(\geq 20 \) min of consecutive zero counts were deleted from the data and thus not analyzed (HELENA and EYHS). Average physical activity was computed as the total number of counts divided by total wearing period in minutes and expressed as counts per minute.

Insulin resistance. We used HOMA-IR as a marker of insulin resistance, calculated as fasting insulin (mUI/L) \(\times \) fasting glucose (mmol/L)/22.5. Serum concentrations of glucose and insulin were measured after an overnight fast. In the HELENA study, glucose was measured on the Dimension R clinical chemistry system (Dade Behring, Schwelbach, Germany), and insulin was measured by a solid-phase two-site chemiluminescent immunometric assay with an Immulite 2000 analyzer (DPC Biermann, Bad Nauheim, Germany) (8). In the EYHS, glucose was measured on a Modular Analytics Modul E (Elecsys, Roche Diagnostics, Mannheim, Germany), and insulin was measured using an immuno- metric method on a Modular Analytics Modul E (Elecsys, Roche Diagnostics, Hamburg, Germany), and insulin was measured by a solid-phase two-site chemiluminescent immunometric assay with an Immulite 2000 analyzer (DPC Biermann, Bad Nauheim, Germany) (8).

Statistics. All statistical analyses were performed using PASW (Predictive Analytics SoftWare, formerly SPSS, version 18.0). The level of significance was set at \(\leq 0.05 \). HOMA-IR was logarithmically transformed (\(\ln \)) and entered in linear regression models as a dependent variable. Main exposures were physical activity, birth weight, and the interaction term physical activity \(\times \) birth weight. Birth weight was normally distributed, and physical activity was squared root transformed to achieve a more symmetrical distribution. Sex, age, sexual maturation, BMI, maternal education, and breastfeeding were also entered into the models as covariates. Interactions with sex were examined; since no significant interaction was found in either the HELENA study (\(P = 0.99 \)) or the EYHS (\(P = 0.03 \)), the analyses were performed for boys and girls together. The association between birth weight and HOMA-IR was further examined, stratifying by high/low (above/below sex-, age-, and study-specific median) levels of physical activity. All the analyses were performed separately for the HELENA study and the EYHS.

RESULTS

The characteristics of adolescents from the HELENA study and the EYHS included in this study are shown in Table 1. Figure 1 graphically shows the interaction (standardized \(\beta \) regression slopes) between birth weight and HOMA-IR according to physical activity levels in the HELENA study and EYHS, i.e., the negative regression slope was flattened in the more active group (above the median of physical activity) compared with the less active one in both studies. The interaction was significant in both the HELENA study and the EYHS (\(P = 0.05 \) and \(P = 0.03 \), respectively), after adjusting for sex, age, sexual maturation, BMI, maternal education level, and breastfeeding duration. Stratified analyses by physical activity levels (below/above median) showed a borderline inverse association between birth weight and HOMA-IR in the low active group (standardized \(\beta = -0.094, P = 0.09 \), and standardized \(\beta = -0.156, P = 0.06 \), for the HELENA study and EYHS, respectively).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>HELENA (n = 572)</th>
<th>EYHS (n = 274)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boys (n = 247)</td>
<td>Girls (n = 325)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>14.6 (1.2)</td>
<td>14.6 (1.1)</td>
</tr>
<tr>
<td>Sexual maturation [n (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanner stage I</td>
<td>5 (2.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Tanner stage II</td>
<td>24 (9.7)</td>
<td>18 (5.5)</td>
</tr>
<tr>
<td>Tanner stage III</td>
<td>49 (19.8)</td>
<td>68 (20.9)</td>
</tr>
<tr>
<td>Tanner stage IV</td>
<td>86 (34.8)</td>
<td>146 (44.9)</td>
</tr>
<tr>
<td>Tanner stage V</td>
<td>83 (33.6)</td>
<td>93 (28.6)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>59.7 (13.1)</td>
<td>55.5 (10.3)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>169.6 (10.1)</td>
<td>162.0 (7.2)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>20.6 (3.3)</td>
<td>21.1 (3.4)</td>
</tr>
<tr>
<td>Average PA (counts/min)</td>
<td>494 (151)</td>
<td>387 (125)</td>
</tr>
<tr>
<td>Birth weight (kg)</td>
<td>3.5 (0.6)</td>
<td>3.3 (0.5)</td>
</tr>
<tr>
<td>Exclusive breastfeeding [n (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>57 (24.6)</td>
<td>67 (21.8)</td>
</tr>
<tr>
<td>1–5 months</td>
<td>145 (62.8)</td>
<td>197 (64.2)</td>
</tr>
<tr>
<td>≥ 6 months</td>
<td>29 (12.6)</td>
<td>43 (14.0)</td>
</tr>
<tr>
<td>Maternal education [n (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower than university</td>
<td>139 (58.9)</td>
<td>216 (68.6)</td>
</tr>
<tr>
<td>University</td>
<td>97 (41.1)</td>
<td>99 (31.4)</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>5.2 (0.4)</td>
<td>5.0 (0.4)</td>
</tr>
<tr>
<td>Insulin (mUI/L)</td>
<td>9.4 (5.8)</td>
<td>10.3 (5.6)</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>2.2 (1.3)</td>
<td>2.3 (1.3)</td>
</tr>
</tbody>
</table>

Data are means (SD), unless otherwise indicated. PA, physical activity. There were 34 and 3 missing values for breastfeeding in the HELENA study and the EYHS, respectively. There were 21 and 2 missing data for maternal education in the HELENA study and the EYHS, respectively.
whereas no evidence of association was found in the high active group (standardized $\beta = 0.031$, $P = 0.62$, and standardized $\beta = 0.053$, $P = 0.55$, for the HELENA study and EYHS, respectively). When ANCOVA (adjusted by the same set of confounders) was conducted using birth weight groups (tertiles), the associations between birth weight and HOMA-IR (Fig. 2) were consistent with those observed in the regression analyses (Fig. 1).

For exploratory purposes, we examined in the HELENA study whether the results were affected after the exclusion of participants with <35 weeks of gestation (i.e., preterm babies, $n = 28, 5.1\%$ of the study sample) and additional adjustment for gestational age. We observed that the associations between birth weight and HOMA-IR (Fig. 2) were consistent with those observed in the regression analyses (Fig. 1).

For exploratory purposes, we examined in the HELENA study whether the results were affected after the exclusion of participants with <35 weeks of gestation (i.e., preterm babies, $n = 28, 5.1\%$ of the study sample) and additional adjustment for gestational age. We observed that the associations between birth weight and HOMA-IR (Fig. 2) were consistent with those observed in the regression analyses (Fig. 1).

DISCUSSION

The results suggest that higher levels of physical activity may attenuate the adverse effects of a low birth weight on insulin sensitivity in adolescents. The interaction effect observed was marginally significant; however, the fact that this finding was observed in two different epidemiological studies conducted on adolescents strengthens the conclusions.

Our findings contrast with those of Ridgway et al. (17), who did not observe an interaction in the association between birth weight and insulin/HOMA-IR by level of objective measured physical activity in children and adolescents from Denmark, Portugal, Estonia, and Norway ($n = 1,254$). However, our results are in agreement with those from two studies assessing physical activity (using questionnaires) in middle-age men (18) and older adults (19). Laaksonen et al. (18) observed that a low size at birth, as assessed by ponderal index (birth length [m] / birth weight [kg]3), was associated with hyperinsulinemia only in less active men ($n = 267$). Likewise, Eriksson et al. (19) concluded that subjects predisposed to type 2 diabetes because of a small birth weight were strongly protected from glucose intolerance by regular exercise ($n = 500$).

Insulin acts upon a variety of tissues within the body; however, those of particular interest for regulating glucose homeostasis are the skeletal muscle, liver, and adipose tissue. Several studies have shown that subjects born with a low birth weight had alterations in the expression or
function in the insulin-signaling components in both adipose tissue and skeletal muscle (i.e., GLUT4, PKC, p85, p110β), or insulin receptor substrate-1) (20,21). Our data suggest that higher levels of physical activity might attenuate the effect of low birth weight on insulin resistance in adolescence. Physical activity–induced physiological adaptations, which might underlie an increased insulin sensitivity, such as increases in levels of GLUT4 and glycogen synthase activity (22) or changes in the expression and/or activity of proteins involved in insulin signal transduction in skeletal muscle (23). Detailed information on molecular and metabolic mechanisms of insulin resistance, with reference to physical activity, has been discussed elsewhere (24).

Some limitations need to be considered. The study samples are relatively small. On the other hand, the accuracy of the objective methodology used for physical activity and the inclusion of two different studies in a single report must be acknowledged. As in previous studies (17,18), information on gestational age was lacking in the EYHS and should be considered as a limitation. Exploratory analyses in the HELENA study participants were in agreement with other studies (25,26); the inclusion of gestational age in the analyses did not modify the association of small birth weight with insulin resistance or glucose tolerance.

Because some methodological differences between the HELENA study and EYHS existed (e.g., method to assess glucose and insulin, and accelerometry criteria), data from both studies were analyzed separately instead of pooling them together. The fact that the results from both studies concurred suggests that the study conclusion is confirmed regardless of differences in methodology, data collection year, age range (12.5–17.5 years in the HELENA study and 14.5–16.5 years in the EYHS), and geographical origin of the adolescent sample.

In conclusion, the present results suggest that being more active might attenuate the adverse effects of low birth weight on insulin resistance in adolescents. This finding has important social and clinical implications and supports that promotion of physical activity is beneficial also in young people at higher risk because of their low birth weight. More observational data from larger and more powerful studies are required to test these findings.

ACKNOWLEDGMENTS

This work was mainly supported by the European Community Sixth RTD Framework Programme (Contract FOOD-CT-2005-007034) and by grants from the Stockholm County Council. This study was also supported by grants from the Spanish Ministry of Education (EX-2008-0641, AP2006-0246), the Swedish Heart-Lung Foundation (20090635), the Swedish Council for Working Life and Social Research (FAS), the Spanish Ministry of Health: Maternal, Child Health and Development Network (Number RD08/0072), and the Spanish Ministry of Science and Innovation (RYC-2010-05957). The content of this article reflects only the authors’ views, and the European Community is not liable for any use that may be made of the information contained therein.

No potential conflicts of interest relevant to this article were reported.

F.B.O. did the statistical analysis, A.H.-W., acquired data, M.G.-G., L.A.M., D.M., A.K., F.G., K.W., and M.S. were mainly responsible for the concept and design of the study, and acquired data. All authors had full access to all data in the study and take responsibility for the integrity of data and the accuracy of data analysis. All authors were involved in the analysis and interpretation of data, drafting the manuscript, and critical revision of the manuscript for important intellectual content.

The authors thank all participating children and adolescents and their parents and teachers for their collaboration. The authors want to thank Manuel J. Castillo from the University of Granada (Spain) for his important role in the HELENA study and his valuable comments on this manuscript. The authors also acknowledge all the members involved in field work for their efforts (see Supplementary Data for a complete list of the HELENA study members).

REFERENCES

2. Park E. Birth weight was negatively correlated with plasma ghrelin, insulin resistance, and coenzyme Q10 levels in overweight children. Nuns Res Pract 2010;4:311–316