Vascular Dysfunction in Experimental Diabetes Is Improved by Pentaerithrityl Tetranitrate but not Isosorbide-5-Mononitrate Therapy

Swenja Schuhmacher,1,2 Matthias Oelze,1 Franziska Bollmann,3 Hartmut Kleinert,3 Christian Otto,1 Tjedo Heeren,1 Sebastian Steven,1 Michael Hausding,1,2 Maike Knorr,1 Andrea Pautz,3 Kurt Reifenberg4 Eberhard Schulz,1 Tommaso Gori,1 Philip Wenzel,1,2 Thomas Münzel,1 and Andreas Daiber1

OBJECTIVE—Diabetes is associated with vascular oxidative stress, activation of NADPH oxidase, and uncoupling of nitric oxide (NO) synthase (endothelial NO synthase [eNOS]). Pentaerithrityl tetranitrate (PETN) is an organic nitrate with potent antioxidant properties via induction of heme oxygenase-1 (HO-1). We tested whether treatment with PETN improves vascular dysfunction in the setting of experimental diabetes.

RESEARCH DESIGN AND METHODS—After induction of hyperglycemia by streptozotocin (STZ) injection (60 mg/kg i.v.), PETN (15 mg/kg/day p.o.) or isosorbide-5-mononitrate (ISMN; 75 mg/kg/day p.o.) was fed to Wistar rats for 7 weeks. Oxidative stress was assessed by optical methods and oxidative protein modifications, vascular function was assessed by isometric tension recordings, protein expression was assessed by Western blotting, RNA expression was assessed by quantitative RT-PCR, and HO-1 promoter activity in stable transfected cells was assessed by luciferase assays.

RESULTS—PETN, but not ISMN, improved endothelial dysfunction. NADPH oxidase and serum xanthine oxidase activities were significantly reduced by PETN but not by ISMN. Both organic nitrates had minor effects on the expression of NADPH oxidase subunits, eNOS and dihydrofolate reductase (Western blotting). PETN, but not ISMN, normalized the expression of GTP cyclohydrolase-1, extracellular superoxide dismutase, and S-glutathionylation of eNOS, thereby preventing eNOS uncoupling. The expression of the antioxidant enzyme, HO-1, was increased by STZ treatment and further upregulated by PETN, but not ISMN, via activation of the transcription factor NRFP.

CONCLUSIONS—In contrast to ISMN, the organic nitrate, PETN, improves endothelial dysfunction in diabetes by preventing eNOS uncoupling and NADPH oxidase activation, thereby reducing oxidative stress. Thus, PETN therapy may be suited to treat patients with cardiovascular complications of diabetes.

Diabetes is a major risk factor for the development of cardiovascular disease (1), and endothelial dysfunction is encountered early during the development of vascular complications in this setting (2). Animal and human studies have demonstrated that increased oxidative stress largely accounts for this phenomenon. In particular, diabetes has been associated with endothelial dysfunction and vascular superoxide production attributed to the activation of the vascular NADPH oxidase and uncoupling of the endothelial nitric oxide synthase (eNOS) (3). In the setting of diabetes, hydroxymethylglutaryl-CoA-reductase inhibition and AT1 receptor blockade have been demonstrated to prevent the activation of NADPH oxidase and to recouple the dysfunctional eNOS. These effects primarily were mediated by an increase in the expression of the BH4-synthesizing enzyme, GTP cyclohydrolase-1 (GCH-1), leading to the normalization of vascular BH4 levels and to the reduction of vascular oxidative stress and endothelial function (4,5). Alternatively, the oxidation of the zinc-sulfur complex (4,6) or phosphorylation at Thr495 (7) may contribute to eNOS uncoupling in diabetic tissue.

Organic nitrates are largely used in the therapy of coronary artery disease. These drugs, however, have important adverse effects, such as the induction of nitrate tolerance and endothelial dysfunction (8–10). Complicating these issues, nitrate resistance (i.e., a reduced responsiveness to organic nitrates mainly as a result of increased oxidative stress in vascular tissue) frequently is encountered in the setting of diabetes. Rather than improving vascular function, however, administration of exogenous NO in the form of organic nitrates would lead in this setting to its deterioration, an effect likely attributed to an increased formation of the NO/O2− reaction product, peroxynitrite, and an effect also observed in the setting of hypercholesterolemia (11).

An interesting compound with recently discovered new features is the organic nitrate pentaerithrityl tetranitrate (PETN). In contrast to all other organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate (ISMN), and isosorbide dinitrate, PETN is an organic nitrate that is devoid of adverse effects, such as the induction of nitrate tolerance, vascular oxidative stress, and endothelial dysfunction (12,13). Providing an explanation for these observations at a molecular level, PETN has been shown to be a powerful inducer of heme oxygenase-1 (HO-1), which subsequently stimulates the expression of ferritin and...
ORGANIC NITRATES AND DIABETES

increases vascular bilirubin and CO levels (14–16), leading to a reduction of oxidative stress in vascular tissue. In contrast, ISMN was reported to induce endothelial dysfunction, a phenomenon that was corrected by vitamin C, pointing to the reactive oxygen species (ROS) stimulatory effects of this organic nitrate (17). In a recent study, we reported that PETN, but not ISMN, improves vascular oxidative stress and dysfunction in two different animal models of arterial hypertension (18).

With the present studies, we sought to determine whether the treatment of diabetic animals with NO donors with and without antioxidant capacities may influence endothelial dysfunction and oxidative stress in a rat model of diabetes.

RESEARCH DESIGN AND METHODS

The GenORefa transfection reagent was from Merck (Darmstadt, Germany). Zeocin and psiRNAH1-GFPpBaeo were purchased from Invitrogen (San Diego, CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NRF2 siRNA (SI03650950), and the HiPerFect HTS reagent were purchased from Qiagen (CA). The negative control (SI03650325), the validated anti-NR
plate were selected with zeocin (0.2 mg/mL) and for GFP expression by fluorescence-activated cell sorting, resulting in the DLD-1-HO-1-prom cell line. **Transient transfection of cells with siRNAs.** Cells were transiently transfected with a validated anti-NRF2 siRNA (SI03246950) or a negative control siRNA (SI03650325) by lipofection with the HiperFect HTS Reagent, according to the manufacturer’s recommendations. **Statistical analysis.** Results are expressed as means ± SEM. *T* Tests or one-way ANOVA (with Bonferroni or Dunn correction for comparison of multiple means) were used for comparisons of vasodilator potency and efficacy, ROS detection by chemiluminescence, cytochrome c reduction or fluorescence, as well as protein expression, RNA expression, luciferase activity, and antioxidant capacity. The EC_{50} value for each experiment was obtained by log transformation. *P* values < 0.05 were considered significant.

RESULTS

Blood glucose and weight gain. STZ-induced diabetes in Wistar rats caused a four- to fivefold increase in blood glucose and a 60% decrease in body weight gain within the therapy interval (Fig. 1). The organic nitrates did not affect weight gain in diabetic rats, but PETN, in contrast to ISMN, caused a minor but significant decrease in blood glucose in diabetic animals (Fig. 1).

Vascular function. Diabetes-induced endothelial dysfunction in diabetic vessels was manifest as a significant right shift of the acetylcholine concentration-relaxation curve, as observed by isometric tension studies (Fig. 2A). Therapy with PETN, but not ISMN, partially normalized diabetes-induced endothelial dysfunction (Fig. 2A). Also, endothelium-independent, GTN-mediated relaxation was impaired in the setting of diabetes and was completely normalized by PETN cotreatment but not improved by ISMN (Fig. 2B).

FIG. 1. Weight gain and blood glucose levels in control and diabetic rats 8 weeks after STZ injection and 7 weeks of organic nitrate treatment. **A:** Weight gain was calculated from the difference of values before and after STZ injection. **B:** Blood glucose was determined on the day the animals were killed (8 weeks after STZ injection). Data are the means ± SEM of 10–11 (+PETN/+ISMN groups) or 20–22 (Ctr/STZ groups) animals per group. *P < 0.05 vs. control; #P < 0.05 vs. STZ-injected group.

FIG. 2. Effects of organic nitrate treatment on endothelium-dependent and -independent vasodilation in diabetic rats. Vascular function was determined by isometric tension studies and relaxation in response to endothelium-dependent (ACh) (A) and endothelium-independent with requirement of bioactivation (GTN) (B) vasodilators. Data are shown for control (Ctr) (circles), diabetic (STZ) (squares), STZ+PETN (triangles), and STZ+ISMN (inverted triangles) animals. Data are the means ± SEM of 37–77 (ACh) and 40–88 (GTN) aortic rings from 10–22 animals per group. *P < 0.05 vs. control; #P < 0.05 vs. STZ.
XO- and Nox-derived ROS. As a measure of NADPH oxidase activity, we used cardiac membrane fractions, which were stimulated with NADPH. Diabetes almost doubled the activity of membrane-bound NADPH oxidases. PETN therapy significantly decreased the signal in the hyperglycemic group (Fig. 3A). In contrast, ISMN significantly increased the NADPH oxidase activity in membranous fractions.Membranous superoxide formation also was determined by HPLC-based quantification of 2-hydroxyethidium, which was increased in samples from diabetic rats and normalized by PETN therapy (Supplementary Fig. S1).

Finally, STZ-induced diabetes activated XO and led to increased serum ROS formation in the presence of hypoxanthine, which was normalized by PETN, but not ISMN, therapy (Fig. 3B). The latter rather increased serum XO activity. As a related parameter, serum antioxidant capacity was dramatically decreased in the setting of diabetes, improved by PETN, and not altered by ISMN (Fig. 3C). These data indicate that hyperglycemic conditions cause the depletion of serum low-molecular weight antioxidants, which may contribute to ROS- and reactive nitrogen species–triggered endothelial dysfunction.

Vascular and cardiac oxidative stress. Aortic ROS formation was detected in cryosections using DHE-dependent fluorescent microtopography and quantified by densitometry (Fig. 4A). DHE fluorescence revealed a significant increase in ROS formation in the whole vessel wall (endothelium, media, and adventitia) of vessels from hyperglycemic rats. PETN, but not ISMN, therapy normalized the abnormal vascular ROS formation. As a measure for cardiac oxidative stress, the content of 3-nitrotyrosine– and malondialdehyde-positive proteins in heart tissue was determined by dot-blot analysis (Fig. 4B and C). Both markers of oxidative stress were significantly increased in the diabetic group, completely normalized by PETN therapy, and partially improved by ISMN.

Activation of vascular NADPH oxidases in the setting of diabetes and antioxidant, counterregulatory pathways. The expression of the membrane-located NADPH oxidase subunits Nox1 and Nox2 in aorta was increased by STZ-induced diabetes. Nox2 expression was partially suppressed by PETN, but not ISMN, therapy (Fig. 5A and B). As a compensatory mechanism, the expression of the antioxidant HO-1 system was increased in the setting of diabetes, which was further amplified by PETN supplementation (one of the known pleiotropic antioxidant properties of PETN) but decreased in the ISMN treatment group (Fig. 5C). Expression of the important antioxidant enzyme ecSOD was decreased by hyperglycemia but dramatically increased by PETN therapy and to a minor extent in the ISMN-treated animals (Fig. 5D).

Mechanisms of eNOS uncoupling in the setting of diabetes. eNOS expression was increased in diabetic rats and not altered by organic nitrates (Fig. 6A). Although there was a tendency for PETN-dependent improvement of the activating (Ser1177) phosphorylation state of eNOS, this difference was not significant, and this activating phosphorylation was suppressed in diabetic animals (Fig. 6B and C). Compatible with the uncoupling of eNOS, the tetrahydrobiopterin (BH4) synthase, GCH-I, was downregulated in the setting of diabetes and was normalized by PETN, but not ISMN, treatment (Fig. 6D). In contrast, the expression of the BH4 recycling DHFR was increased in the setting of diabetes and further augmented by PETN but inhibited by ISMN therapy (Fig. 6E). According to a recent publication...
by Zweier, eNOS is glutathionylated under oxidative stress conditions and uncoupled (converted to a superoxide source) by this mechanism (30). We observed increased S-glutathionylation of eNOS in diabetic rats, which was normalized by PETN therapy but not by ISMN treatment (Fig. 6F).

Mechanistic insights in the induction of HO-1 and GCH-I by PETN in cell culture. The activity of the HO-1 promoter was increased by PETN but not by ISMN (Fig. 7A) or other organic nitrates, such as GTN and isosorbide dinitrate (not shown). The PETN-mediated increase in the HO-1 promoter activity was suppressed by siRNA-mediated knockdown of NRF2 mRNA (Fig. 7B). The successful down-regulation of the transcription factor, NRF2, and downstream inhibition of the PETN-mediated HO-1 induction was determined at the mRNA level (Supplementary Fig. S2). Because PETN is a potent inducer of HO-1, we determined the effects of the products from HO-1–catalyzed breakdown of metal porphyrins, bilirubin, and carbon monoxide on the expression level of GCH-I. Both HO-1–derived products increased the expression of GCH-I (Fig. 7C).

DISCUSSION

With the present studies, we show for the first time that the significant impairment of vascular function (ACh and GTN responses) in diabetic animals is partially improved by PETN, but not ISMN, therapy. Cardiac and vascular oxidative stress was increased in the STZ-induced diabetic group and almost completely normalized by PETN treatment, whereas ISMN, in most cases, did not alter reactive O2·− and nitrogen species (RONS) formation (Nox and XO activity, serum antioxidant capacity, and vascular oxidative stress) or had less pronounced effects compared with PETN (3NT and MDA content). These observations were mirrored by the protein expression profiles of Nox isoforms, eNOS, the BH4-synthesizing GCH-I, the BH4-recycling DHFR, and the antioxidant enzymes ecSOD or HO-1.

Oxidative stress is a major cause of reduced vascular NO bioavailability in diabetes (3). Besides the direct inactivation of NO by reaction with superoxide (31), the resulting peroxynitrite is known to potently oxidize and thereby deplete the eNOS cofactor BH4 (32), which in turn causes eNOS uncoupling. This concept is supported by the present findings and our previous observations that hyperglycemia causes endothelial and smooth-muscle dysfunction, with a major role for oxidative stress (3–5,33). More importantly, there was a clear correlation between NADPH oxidase activity, endothelial dysfunction, and nitrate resistance (Supplementary Figs. S3 and S4). The present data demonstrate an activation of known sources of RONS, the NADPH oxidase, the XO, and the uncoupled eNOS, which is in accordance with our previous observations (4,5). According to the concept of “kindling radicals,” initial ROS formation (e.g., from NADPH oxidases) triggers further damage, such as eNOS uncoupling by oxidative depletion of BH4 or oxidation of the zinc-sulfur complex, both compromising the integrity of the eNOS dimer (4,6,34,35). Alternatively, protein kinase C–dependent phosphorylation of eNOS at Thr495 has been shown to impair NO synthesis and may even lead to uncoupling with superoxide formation (7). Here, we also show for the first time that eNOS glutathionylation may contribute to eNOS dysfunction/uncoupling in the setting of diabetes (Fig. 6F), as recently published for spontaneously hypertensive rats (30). In agreement with this hypothesis, we found an increased expression of Nox1 and Nox2 isoforms in aorta from diabetic rats, and the increased superoxide formation from
Nox isoforms was further amplified by a significant decrease in ecSOD, as previously reported (36).

The inducible antioxidant enzyme HO-1, a typical stress gene, was induced by STZ treatment, as previously shown for chronic hyperglycemia (37,38). PETN therapy further amplified HO-1 expression, which was previously reported as an antioxidant feature of this organic nitrate contributing to its beneficial profile during chronic treatment (14,16,39). According to the present findings, HO-1 induction by PETN is likely determined by the activation of the transcription factor NRF2 because this beneficial effect of PETN was lost upon silencing of NRF2 in cell culture, supporting the reported role of NO in this process (40). These data are in accordance with previous observations that pharmacological (16) and genetic (18) suppression of HO-1 activity results in the loss of the beneficial pleiotropic effects of PETN.

As shown previously (3), the expression of eNOS was increased in diabetic rats, suggesting that this may be a compensatory “rescue” mechanism of the organism to respond to endothelial dysfunction (Fig. 6). However, because eNOS is in its uncoupled state in diabetic animals (3–5,33), an additional increase in eNOS-produced ROS rather results in a vicious cycle. The most reasonable explanation for the uncoupling of eNOS is the down-regulation of GCH-I that results in decreased BH4 levels.
We observed an increase in the expression of GCH-I in the PETN-treated group (Fig. 6D), compatible with our previous finding in angiotensin II–induced hypertension that PETN increases GCH-I expression via activation of the HO-1 pathway (18). In addition, the content of eNOS that was phosphorylated at Ser1177 (Akt dependent), another known Ca2+-independent route to activate the enzyme, was significantly decreased in the setting of diabetes.

FIG. 6. Effects of organic nitrate treatment on the expression of vascular eNOS, GCH-I, and DHFR and phosphorylation, as well as the S-glutathionylation state of eNOS in diabetic rats. eNOS (A), Ser1177-phospho-eNOS (B), the ratio of Ser1177-phospho-eNOS to eNOS (C), GCH-I (D), and DHFR (E) were assessed using the Western blotting technique and specific antibodies. F: S-glutathionylation of eNOS was determined by eNOS immunoprecipitation, followed by anti-glutathione staining. After stripping the membrane, the bands were stained for eNOS to allow normalization of the signals. As a control for the specificity of the antibody for GSH-positive proteins, diabetic samples were treated with β-mercaptoethanol. Representative blots are shown at the bottom of each densitometric quantification. Data are the means ± SEM of aortic rings from 6–15 (A, D, and E) and 5–8 (B, C, and F) animals per group. *P < 0.05 vs. control; #P < 0.05 vs. STZ; $P < 0.05 vs. PETN.

FIG. 7. Effect of organic nitrites on the activity of the 11-kb human HO-1 promoter in the dependence of NRF2 and induction of GCH-I by HO-1 products. A: DLD-1-HO-1-prom cells were washed with PBS and incubated with Dulbecco’s modified Eagle’s medium containing 2 mmol/L L-glutamine in the absence of serum and phenol red. After 16 h, cells were incubated with 50 μmol/L PETN (or DMSO as a solvent control) or 50 μmol/L ISMN (or water as a solvent control) for 8 h, lyzed in 1× passive lysis buffer, and protein concentrations were measured using the Bradford reagent. Luciferase activity in the extracts was determined using the luciferase assay system. The light units of the firefly luciferase were normalized to the protein concentration of the cell extracts. The relative luciferase activity level of cells treated with the solvent control was set to 100%. B: DLD-1-HO-1-prom-cells were transiently transfected with an anti-NRF2 siRNA (siNRF2), which is shown to downregulate NRF2 expression, or a negative control siRNA (siCon) by lipofection with HiPerFect HTS Reagent according to the manufacturer’s recommendations. After 48 h, cells were treated as described above to analyze PETN-induced human HO-1-11kb promoter activity. The relative luciferase activity level of cells treated with DMSO and siCon was set to 100%. C: Confluent human endothelial cells (E.A.hy 926) were treated in six-well plates with solvent (0.1% DMSO = Ctr), bilirubin (BR; 10 μmol/L), the carbon monoxide–releasing compound (CORM = CO; 50 μmol/L), or PETN (P; 50 μmol/L) for 15 h in the incubator. Two wells were pooled for GCH-I protein analysis (1:2,500; Dr. E. Werner, Innsbruck, Austria). Data are the means ± SEM of 6–10 (A and B) and 3–9 (C) independent experiments. *P < 0.05 vs. control; $P < 0.05 vs. PETN (siCtr).
which could contribute to the low NO-producing activity of eNOS in diabetic tissue (43).

Finally, the expression of the BH4-recycling DHFR, the so-called “salvage” pathway, was increased in the setting of diabetes, compatible with the attempt of the organism to compensate for the loss of BH4 de novo synthesis. This compensatory effect was supported by the administration of PETN but was abrogated by ISMN.

All of these cardiovascular complications and adverse side effects of STZ-induced diabetes were, in most cases, almost completely normalized, or at least significantly improved, by PETN therapy. In contrast, ISMN supplementation had only minor effects on these parameters and only in some cases partially improved them. Thus, our data suggest that the interaction of organic nitrates with the vascular abnormalities induced by diabetes should not be extended to all drugs in this class. Induction of additional oxidative stress evoked by organic nitrates may play an important role in the setting of nitrate-induced and diabetes-induced endothelial dysfunction and might potentially represent a major drawback for the use of nitrates in diabetic patients. In this scenario, one opportunity may be supplementation with antioxidants, such as hydralazine (44,45) or lipoic acid (46,47), which are known to suppress nitrate tolerance and improve endothelial dysfunction, or at least the use of an organic nitrate that activates intrinsic antioxidant pathways such as PETN (48,49), which displays potent antioxidant properties that are mediated by induction of HO-1 (14,16,39), ecSOD (50), and many other cardioprotective genes (51). Previous data show that the ecSOD is induced by HO-1 activity (or HO-1–derived products) (33). In addition, we recently have reported that PETN improves angiotensin II–triggered endothelial dysfunction and vascular oxidative stress by recoupling of eNOS and suppression of NADPH oxidase activity (18), in accordance with previous reports that PETN improves established atherosclerosis (52). All of these observations may explain the beneficial effects of PETN in the present model of experimental diabetes.

Conclusions and clinical implications. The results of the present studies support previous findings that vascular dysfunction is associated with increased vascular oxidative stress in this in vivo model of diabetes. Treatment with the organic nitrate, PETN, but not with ISMN, improves endothelium-dependent and -independent relaxation, reduces oxidative stress, prevents activation of NADPH oxidase, and inhibits XO-mediated superoxide production. The important role of NADPH oxidase in this process is reflected by the correlation between vascular function and the activity of this enzyme complex (Supplementary Figs. S3 and S4). We propose that the powerful pleiotropic antioxidant effects of PETN account for the improvement of vascular function. According to preliminary data, PETN also seems to modify the metabolism of glucose in diabetic rats (Fig. 1), possibly by regulation of metabolic pathways, such as AMP-activated kinase (not shown). These experimental data that an organic nitrate improves vascular dysfunction in STZ-induced diabetes are new and further corroborate the concept that the organic nitrate, PETN, with intrinsic antioxidant properties, may be useful for the treatment of diabetic patients requiring anti-ischemic therapy. However, it should be noted that STZ treatment results in type 1 diabetes and that the present findings cannot necessarily be translated to type 2 diabetes, a clear limitation of the current study regarding the clinical importance of the latter form. The clinical importance of the present findings is based on the fact that cardiovascular complications (including angina pectoris) are a hallmark of diabetes, and diabetic patients with a two- to fourfold increased risk for infarction, especially, would benefit greatly from organic nitrate treatment devoid of classical adverse effects, such as nitrate-induced vascular oxidative stress, nitrate tolerance, and endothelial dysfunction (cross-tolerance).

ACKNOWLEDGMENTS

The present work was supported by generous financial support from the Johannes Gutenberg University and Medical Center Mainz (Forschungsfonds and MAIFOR grants to A.D.) and a vascular biology grant from Actavis Deutschland (to A.D. and T.M.). A.D. received honoraria and research grant support from Actavis Deutschland, Langenfeld, Germany. This article contains results that are part of the doctoral thesis of C.O.

No potential conflicts of interest relevant to this article were reported.

S.Sc. and M.O. researched data and reviewed and edited the manuscript. F.B. researched data. H.K. researched data and wrote, reviewed, and edited the manuscript. C.O., T.H., S.St., M.H., M.K., and A.P. researched data. K.R. contributed to discussion. E.S. contributed to discussion and reviewed and edited the manuscript. T.G. reviewed and edited the manuscript. P.W. contributed to discussion and reviewed and edited the manuscript. T.M. contributed to discussion and wrote the manuscript. A.D. researched data; contributed to discussion; and wrote, reviewed, and edited the manuscript.

Parts of this study were presented in abstract form at the Arteriosclerosis, Thrombosis, and Vascular Biology 2011 Scientific Sessions, Chicago, Illinois, 28–30 April 2011, and at the 17th Annual Meeting of the Society for Free Radical Biology and Medicine, Orlando, Florida, 17–21 November 2010.

The authors thank Jörg Schreiner (University Medical Center Mainz, Mainz, Germany), Angelica Karpi (University Medical Center Mainz, Mainz, Germany), and Anja Conrad (University Medical Center Mainz, Mainz, Germany) for expert technical assistance.

REFERENCES

10. Johnston GD. Ulster says

12. Gori T, Al-Hesayen A, Jolliffe C, Parker JD. Comparison of the effects of

31. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite:

19. Juan SH, Cheng TH, Lin HC, Chu YL, Lee WS. Mechanism of concentration-

25. Rajagopalan S, Kurz S, Münzel T, et al. Angiotensin II-mediated hyper-

17. Thomas GR, DiFabio JM, Gori T, Parker JD. Once daily therapy with iso-

19. Juan SH, Cheng TH, Lin HC, Chu YL, Lee WS. Mechanism of concentration-

21. Oelze M, Knorr M, Schumacher S, et al. Vascular dysfunction in strep-

24. Oelze M, Daiber A, Brandes RP, et al. Nebivolol inhibits superoxide for-

25. Rajagopalan S, Kurz S, Münzel T, et al. Angiotensin II-mediated hyper-

28. Edgell CJ, McDonald CC, Graham JB. Permanent cell line expressing hu-

29. Jansen T, Holtmann M, Oelze M, et al. Conversion of biliverdin to bilirunin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1 evidence for direct and indirect antioxidant actions of biliru-

32. Kuzkaya N, Weissmann N, Harrison DG, Dikakol S. Interactions of per-

35. Lahnmesri U, Dikakol S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hyperten-

36. Laybutt DR, Kaneto H, Hasenkamp W, et al. Increased expression of an-

37. Laybutt DR, Kaneto H, Hasenkamp W, et al. Increased expression of ant-

38. Oksala NK, Lappalainen J, Laaksonen DE, et al. Alpha-lipoic acid modu-

41. Xu J, Wang S, Wu Y, Song P, Zou MH. Tyrosine nitration of PA700 activates the 285 proteasome to induce endothelial dysfunction in mice with an-

44. Daiber A, Oelze M, Coldewey M, et al. Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial ef-

50. Oppermann M, Balz V, Adams V, et al. Pharmacological induction of vas-

S. SCHUHMACHER AND ASSOCIATES