Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks

Sarah J. Lessard¹, Donato A. Rivas², Ana B. Alves-Wagner¹, Michael F. Hirshman¹, Iain J. Gallagher³, Dumitru Constantin-Teodosiu⁴, Ryan Atkins⁴, Paul Greenhaff⁶, Nathan R. Qi⁵, Thomas Gustafsson⁶, Roger A. Fielding², James A. Timmons⁶,⁷, Steven L. Britton⁸, Lauren G. Koch⁸, Laurie J. Goodyear¹.

¹Joslin Diabetes Center, USA; ²Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, USA; ³University of Stirling, UK; ⁴University of Nottingham, UK; ⁵Department of Internal Medicine, University of Michigan, USA; ⁶Karolinska Institutet; Sweden; ⁷Loughborough University, UK; ⁸Department of Anesthesiology, University of Michigan, USA.

Short/running title: Exercise resistance increases metabolic risk

Address for correspondence:
Laurie J. Goodyear
Joslin Diabetes Center
One Joslin Place
Boston, MA
02215
E-mail: laurie.goodyear@joslin.harvard.edu
Phone: 617-309-2573
ABSTRACT
Low aerobic exercise capacity is a risk factor for diabetes and strong predictor of mortality; yet some individuals are “exercise resistant”, and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease-risk, we used selective breeding for 15 generation to develop rat models of low- and high-aerobic response to training. Before exercise training, rats selected as low- and high-responders had similar exercise capacities. However, after 8-wks of treadmill training low-responders failed to improve their exercise capacity, while high-responders improved by 54%. Remarkably, low-responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the “exercise resistant” phenotype segregates with disease risk. Low-responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low-responders. Low-responders had increased stress/inflammatory signaling and altered TGFβ signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease.
INTRODUCTION
Chronic complex diseases such as the metabolic syndrome and diabetes are a tremendous burden to our society, while regular physical activity (~150 min aerobic training each week) is a primary recommendation for the prevention and treatment of these conditions (1-3). The potential for exercise to prevent chronic disease is exemplified by large-scale epidemiological studies demonstrating that cardiorespiratory fitness (i.e. aerobic exercise capacity) is one of the strongest predictors of health and longevity (4-6). For example, individuals with low aerobic exercise capacity have more than 4-fold higher risk of developing the metabolic syndrome and diabetes (7), and up to 5-fold higher all-cause mortality rates (8;9). The striking health risks associated with low aerobic exercise capacity are independent of other metabolic risk factors including obesity and age (9-11) -highlighting the importance of investigating the specific mechanisms that link exercise capacity to diabetes risk.

At present, the only clinically validated treatment for the improvement of exercise capacity is exercise training (12;13). However, significant variation exists in the ability to improve aerobic exercise capacity with exercise training in humans (14-16). In response to a standardized laboratory training protocol, changes in aerobic exercise capacity, as measured by VO$_{2max}$, can range from negative or no gain in some individuals (non-responders) to >100% improvements in others (high-responders) (14;17). The fact that some individuals are completely unresponsive to aerobic improvements with exercise training infers the existence of “exercise resistance”.

Considering the strong association between low aerobic exercise capacity and metabolic dysfunction (8), identifying mechanisms that contribute to the disparity in exercise training response may provide new targets for the treatment of chronic metabolic disease. However, the exercise capacity phenotype is determined by complex gene-environment interactions involving intrinsic factors (inborn) and those accrued in response to exercise training, making it challenging to isolate the critical mechanisms (17-20). Furthermore, animal models based on single-gene modifications (i.e. knockouts or transgenics) are inadequate to study the interaction between complex traits such as exercise capacity and metabolic disease. As such, we identified a need to develop genetically heterogeneous (non-inbred) animal model systems that more closely embody human phenotypes and disease (19).

Here, we describe novel rat models of low (LRT) and high (HRT) aerobic response to training that were created by divergent selective breeding to elucidate the mechanistic links between low aerobic adaptation to exercise training and disease risk. These models allowed us to directly test the hypothesis that non-responders to exercise training have an increased risk for metabolic disease. Furthermore, since many of the health benefits attributed to exercise training stem from activation and remodeling of
skeletal muscle, impaired adaptation in this tissue likely underlies the exercise resistant phenotype. However, the multitude of concurrent transcriptional and signaling events that occur in skeletal muscle in response to exercise has made it difficult for previous research to establish which of these are essential for adaptive improvements to exercise capacity and health. Therefore, we used this contrasting animal model system to identify, using an unbiased approach, the molecular and morphological responses in skeletal muscle that are critical for improvements to exercise capacity, and potentially, metabolic health.

RESEARCH DESIGN AND METHODS

Artificial selection for Low (LRT) and High (HRT) Response to Training. To increase genetic heterogeneity, N: NIH outcrossed stock rats (n=152) were used as the founder population (Generation 0), rather than inbred strains. At ~10 wks of age, the exercise capacity of each rat was measured using an incremental treadmill running test, which has been described previously (20). Each rat then underwent 24 sessions (3 d/wk for 8 wks) of treadmill running training using a protocol that increased in speed (from 10 to 20 m/min) and duration (from 20 to 30 min) each session. This moderate protocol was designed to ensure that all rats could complete the entire training schedule, regardless of their initial exercise capacity or relative change in capacity across training sessions (21). Following completion of exercise training, the exercise capacity of each rat was measured (as above), and the training response was calculated as the change in exercise capacity: (post-training exercise capacity) – (pre-training exercise capacity). Rats with the highest response to training (HRT) were chosen for one line of selective breeding (10 families/generation), while rats with the lowest response to training (LRT; 10 families/generation) were chosen for an independent line. Approximately 100 offspring per line at each generation were assessed for training response and this selection process was repeated for 15 generations (total n = 3,114 rats). Rats were fed rodent pellet diet (diet #5001, Purina Mills, Richmond, IN) and given free access to water. All procedures were carried in accordance with the University Committee on Use and Care of Animals at the University of Michigan.

Acute exercise bout. 40 female rats (n=20 LRT and n=20 HRT) from generation 12 were sent from University of Michigan (Ann Arbor, MI, USA) to the Joslin Diabetes Center (Boston, MA, USA). Following a 2 wk acclimatization period, a subset of rats (n=13/group) underwent an acute bout of exercise consisting of 25 min treadmill running (15% incline) at a moderate speed (15 m/min). A second group of rats did not exercise and acted as sedentary controls (n=7/group). Blood and tissue collection for the exercised rats occurred either immediately following the exercise bout (n=7/group) or 3 hours following the exercise bout (n=6/group). All experiments were performed in accordance with the Institutional Animal Care and Use Committee of the Joslin Diabetes Center. Oxygen consumption (VO2), carbon
dioxide production (VCO₂) were measured using the Comprehensive Laboratory Monitoring System (CLAMS, Columbus Instruments).

Chronic exercise training. 40 female rats (n=20 LRT and n=20 HRT) from generation 15 underwent exercise capacity testing (as described above) at 10-12 wks of age. A subset of rats (n=10/group) then underwent an 8 wk exercise training protocol (EXT; described above). A second group of rats did not undergo exercise training and acted as sedentary controls (SED). Following the training period, all rats (EXT and SED) underwent a second exercise capacity test for the calculation of exercise response, as described above. Blood and tissues were collected from EXT rats 48 hours following the last exercise bout, in order to washout the potentially confounding effects of the last exercise bout.

Insulin and glucose tolerance tests. To assess glucose and insulin tolerance, sedentary rats were administered glucose (2g/kg body weight) or insulin (0.75 U/kg body weight) by intraperitoneal injection, and blood glucose concentration was measured using a OneTouch Ultra (Lifescan) glucose monitoring system at specified time points after injection.

Blood metabolite and cytokine measurements. Plasma FFA concentration was determined using an enzymatic colorimetric method (NEFA C, Wako Chemicals, USA, Inc.). Plasma IL6, IL1β, TNFα and leptin concentrations were measured using a multiplex ELISA assay (Milliplex, Millipore, USA). Plasma TGFβ1 concentration was measured using an ELISA assay (MB100B, R&D Systems, USA). Plasma triglycerides were measure using a colorimetric assay (Stanbio Laboratory 2200-430). Plasma glucose was measured using hexokinase reagent (Eagle Diagnostics, #2821).

Citrate synthase activity. Whole-cell lysates from soleus and plantaris muscles were analyzed for citrate synthase activity as previously described (22).

Mitochondrial maximal ATP production rate. 24 sedentary male rats (n=12 LRT and n=12 HRT) from generation 13, and 24 trained male rats (n=12 LRT and n=12 HRT) from generation 14 were sent from University of Michigan (Ann Arbor, MI, USA) to University of Nottingham (Nottingham, UK). Mitochondria were isolated from freshly isolated soleus muscles ~1 wk following completion of training and the rates of maximal ATP production in the presence of various substrates were determined using a luminescence technique as described previously (23). The substrate solutions tested were (final concentrations): glutamate 16.4 mM + succinate 15 mM; palmitoyl-L-carnitine + 5 µM + malate 1.5 mM (with human serum albumin 0.14 mg/ml); pyruvate 50 mM + malate 22 mM; succinate 2.5 mM; glutamate 32.75 mM +malate 22 mM.
Muscle glycogen content. An aliquot (~20 mg) of pulverized gastrocnemius muscle was hydrolyzed with HCl and neutralized with NaOH. The glucose concentration of the resulting lysate was analyzed using hexokinase reagent (Eagle Diagnostics, #2821).

Liver triglyceride content. Triacylglycerol was extracted and saponified from an aliquot of liver (~25 mg) in ethanol/KOH at 55°C, and glycerol content was determined using a colorimetric assay (Sigma).

Western blotting. Gastrocnemius muscle lysates were solubilized in Laemmli buffer, separated by SDS-PAGE, and transferred to nitrocellulose membranes. The membranes were incubated with antibodies specific for either: pERK 1/2 T202/Y204 (CST#4370), pSMAD4 T277 (Abgent AP7753), pSMAD3 S208 (Abgent AP9995), pSMAD2 S245/250/255 (CST#3104), pSMAD2 S465/467 (CST#3104), SMAD2 (CST#5339), pSMAD3 S423/425 (CST#9520), SMAD4 (CST#9515), Active JNK (Promega V7931), JNK (CST#9252), pP38 MAPK (CST#9211), P38 MAPK (CST#9212), pAkt (CST#9271), Akt (CST#9272), pAMPK (CST#5339), pACC (Millipore 07-303), ACC (Upstate), pTAK1 S412 (CST#9339), TAK1 (CST# 4505), pCaMKII T286 (CST#3361), CaMKII (BD611292), CaMKK (BD), AS160 (Upstate). The immunoreactive proteins were detected with enhanced chemiluminescence and quantified by densitometry.

Immunohistochemistry. Plantaris muscles from sedentary (SED) and exercise-trained (EXT) rats were frozen in N_2-cooled isopentane and cut into 6 µm cross-sections. Sections were stained with antibodies against laminin (Sigma-Aldrich, USA) and either Myosin Heavy Chain I (4.951 DHSB, USA) or Myosin Heavy Chain IIA (SC-71, DHSB, USA), or the endothelial marker CD31 (Serotec MCA1334EL) and visualized using fluorescent secondary antibodies under 100x magnification. Analysis of muscle capillary density (capillaries/mm^2) based on CD31 immunofluorescence was performed by OracleBio Limited using a customized vessel detection algorithm within Definiens Tissue Studio 3.5 image analysis software. Quantification of all images was done in a blinded manner.

Ribonucleic acid (RNA) isolation and microarray analysis. A portion of the soleus muscle taken from rats under resting conditions, or 3-hours following an acute bout of treadmill running exercise was preserved and frozen using RNAlater (Qiagen, USA). RNA was extracted using QIAzol lysis reagent (Qiagen, USA) and purified using RNaseasy cleanup kit (Qiagen, USA). RNA quality and integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies). The Ambion® WT Expression Kit (PN 4425209C) was used and labeling of cDNA was performed using the Affymetrix GeneChip® WT Terminal Labeling Kit (PN 900671). Hybridization, washing and staining was carried out on Affymetrix GeneChip Rat Gene-ST 1.0 arrays. Low-level processing and SAM analysis were undertaken as.
Statistical Analysis. Differences between groups were identified using a two-way ANOVA using phenotype and exercise as independent variables. When appropriate, Tukey posthoc testing was performed to assess differences between individual groups. Results are expressed as mean ± SEM and statistical significance was accepted at P<0.05.

RESULTS

Creating genetic models for high and low response to exercise training. Based on evidence that the ability to increase aerobic capacity with exercise training is determined by inherited factors (26), we aimed to create animal models of low (LRT) and high (HRT) response to exercise training via the process of selective breeding. Prior to selective breeding (Generation 0), the average response of the rat population to this exercise training protocol resulted in 140 ± 15 meter (m) increase in exercise capacity. After 15 generations of selective breeding, rats bred as HRT improved endurance running capacity by 223 ± 20 m whereas rats bred as LRT declined -65 ± 15 m in response to treadmill training. We closely evaluated 40 females (20 LRT and 20 HRT) by comparing groups that underwent 8 weeks of treadmill running exercise (exercise-trained) to untrained (sedentary) control groups. At 10 wks of age, rats underwent exercise capacity testing, and it was determined that intrinsic exercise capacity (that which is present in the absence of training) was the same between LRT and HRT (Figure 1A & B; 10 wks). Following exercise training, exercise capacity was 67% higher in HRT vs. LRT (Figure 1B; 20 wks). When the data were expressed as training response (∆ exercise capacity), LRT failed to improve exercise capacity whereas HRT had a 54% increase in exercise capacity due to training (Figure 1C; Exercise-Trained). Therefore, we have successfully created populations of non-responders (LRT) and high-responders (HRT) to exercise training through divergent selective breeding.

LRT display whole-body metabolic dysfunction. Clinical data demonstrate a strong correlation between low exercise capacity and metabolic disease (8). As such, we hypothesized that selection for low response to training (LRT) would segregate with higher metabolic disease risk. In support of this hypothesis, LRT displayed impaired whole-body insulin sensitivity (HOMA-IR; Figure 2A) and higher circulating insulin concentrations under sedentary and exercise-trained conditions (Table 1). Consistent with training-independent insulin resistance, sedentary LRT had impaired glucose tolerance as assessed by the glucose area under the curve (AUC) following intraperitoneal (IP) injection of 2g/kg glucose (Figure 2B) and blood glucose levels were higher in LRT 90 min following intraperitoneal injection of 0.75
U/kg insulin (Figure 2C). LRT also had higher body (Figure 2D) and gonadal fat pad (Figure 2E) weights, higher plasma triglycerides (Figure 2F), and higher circulating leptin (Table 1). Liver triglyceride content was 28% higher in LRT following exercise training (Figure 2I), indicating metabolic dysfunction in this tissue. Notably, insulin resistance and adiposity in LRT were present in the absence of exercise training (sedentary condition), at a relatively young age (20 wks), and under normal diet conditions (chow-fed; 13.5% calories from fat), demonstrating that primary metabolic defects co-selected with the genes that contribute to low aerobic training response.

Altered systemic inflammatory mediators are postulated to be contributing factor to the metabolic syndrome (27;28). Therefore, we measured the circulating levels of key inflammatory markers in LRT and HRT. Plasma cytokine levels were not different between untrained LRT and HRT rats (Figure 2E & F; Table 1). However, following exercise training (samples taken 48 hours after the last exercise bout), plasma concentrations of the inflammatory cytokine TNF-α were 185% higher in LRT (Figure 2E), demonstrating that an altered inflammatory response to training accompanies the LRT phenotype. In contrast, plasma concentrations of the “anti-inflammatory” cytokine TGF-β were 50% lower in LRT compared to HRT following exercise training (Figure 2F). Thus, TGFβ and TNFα were divergently regulated by exercise training in LRT and HRT, indicating that these pleotropic cytokines may contribute to the training response phenotype.

LRT do not have impaired mitochondrial function in skeletal muscle. Although other organs (e.g. the heart) may contribute to the exercise capacity phenotypes in LRT and HRT, due to its significant contribution to total body mass, skeletal muscle has greater potential to influence both exercise capacity and whole-body metabolic health (29). Therefore, we measured several characteristics of skeletal muscle that have the potential to influence exercise capacity and metabolic health in LRT and HRT. Impaired mitochondrial capacity has been proposed as a mechanism contributing to the metabolic syndrome (30;31) and increased mitochondrial capacity contributes to improved aerobic exercise capacity with training (32). However, there was no difference in markers of mitochondrial density (citrate synthase activity in whole-muscle lysates) or mitochondrial function (maximal ATP production rates in isolated mitochondria) between LRT and HRT in the sedentary state (Table 2). Furthermore, LRT had normal increases in mitochondrial density and function in response to the moderate exercise training regimen (Table 2). Therefore, our results indicate that impaired mitochondrial function is not responsible for metabolic dysfunction, or the failure to improve exercise capacity with training in LRT.

LRT have altered skeletal muscle fiber-type. Endurance athletes often have a higher proportion of Type I (oxidative) fibers in skeletal muscle (33) and low Type I fiber content is associated with insulin
resistance, obesity and Type 2 diabetes (34-36). Consistent with a proposed link between lower proportion of Type I fibers and metabolic dysfunction, Type I fibers accounted for ~7% of the total fibers in LRT, compared to >20% in HRT (Figure 3A). Therefore, higher Type I fiber content may contribute to improved insulin sensitivity in HRT. However, fiber-type differences between LRT and HRT were independent of exercise training and therefore cannot explain post-training differences in exercise capacity. No differences were observed in Type IIA (oxidative/glycolytic) fiber content (Figure S1).

LRT have impaired exercise-induced angiogenesis in skeletal muscle. Exercise-training stimulates angiogenesis in skeletal muscle, and this may contribute to improved exercise capacity and metabolic health (10;37). Capillary density was similar in skeletal muscle from LRT and HRT under untrained conditions (Figure 3B). In contrast, capillary density was 50% higher in HRT following exercise training (Figure 3B). The failure of LRT to stimulate angiogenesis in response to training may contribute to divergent responses to training in these models. Overall, the skeletal muscle characteristics of low type I fiber content in conjunction with impaired exercise-induced angiogenesis demonstrates a general alteration in muscle phenotype and impaired tissue remodeling in LRT.

LRT and HRT response to a single bout of treadmill running. It has been hypothesized that each single bout of exercise initiates signaling and transcriptional events which accumulate with repeated bouts to produce exercise training adaptations (38). However, a direct link between the acute molecular responses to exercise and the molecules that regulate long-term adaptation remains elusive (39) and our unique model affords an opportunity to provide new insight into this question. To determine differences in the molecular response to a single bout of exercise, LRT and HRT rats remained sedentary for 20 wks following phenotyping to washout the effects of training. The de-trained rats then performed a single bout of moderate intensity treadmill running for 25 min at a speed of 15 m/min. Oxygen consumption, the respiratory exchange ratio (RER), muscle glycogen concentrations, and serum free fatty acid concentrations were similarly altered by exercise in LRT and HRT, indicating that the intensity of the exercise bout was not different for the LRT and HRT rats (Fig S2). To test the hypothesis that LRT had altered exercised-induced signaling, we measured AMPK and Akt phosphorylation- molecular signals that have been proposed to be critical mediators of exercise training-induced adaptations in skeletal muscle (40;41). Exercise increased AMPK and Akt signaling in the muscle; however, there was no difference between LRT and HRT (Fig S3). These data suggest that as-yet-unidentified pathways mediate the adaptive response to exercise training.

Contrasting transcriptional responses to exercise in LRT and HRT. As a framework to identify the gene networks that regulate training response, a microarray experiment was done to establish the
exercise-responsive networks that were differentially regulated in LRT and HRT. Microarray analysis on RNA extracted from soleus muscles in the basal state and 3 hours following a single bout of exercise identified subsets of genes that were exclusively upregulated in response to exercise in LRT (n=130 genes) and HRT (n=59 genes; Figure S4), while 133 genes were downregulated in response to exercise exclusively in LRT (Figure S4). Analysis using Ingenuity Pathway Analysis (IPA) revealed that the LRT and HRT exercise-regulated transcriptomes shared no common ontological overlap, indicating a striking contrast in transcriptional responses to the same exercise bout in these models. Genes differentially regulated by exercise in LRT and HRT belonged to the functional categories of gene expression, development, cell cycle regulation, cellular growth, proliferation and movement (Figure S4D). This unbiased analysis of the global molecular responses to acute exercise demonstrates that inherent differences in the muscle remodeling response may contribute to the exercise adaptation phenotype.

SMAD3, CREB1, and HDAC target genes are dysregulated in LRT. To identify the upstream processes underlying differential exercise-induced gene network modulation between LRT and HRT, the IPA upstream analysis tool was used on their respective exercise-regulated transcriptomes. This analysis identified activation of SMAD3 and cAMP response-element binding (CREB1) target genes and inhibition of histone deacetylase (HDAC)-regulated genes following exercise in LRT (Figure 4; P<1x10^{-5}). No such gene network nodes were found in the HRT exercise-regulated gene list, demonstrating that LRT activate a unique molecular response to exercise. Based on these data, we hypothesized that exercise-stimulated protein signaling events that control SMAD, CREB, and HDAC transcription are dysregulated in LRT.

Muscle signal transduction is altered in LRT. Calcium/calmodulin-dependent protein kinase (CaMK) II is an important mediator of intracellular calcium homeostasis and skeletal muscle plasticity (42;43), and is a key feature of the human exercise training transcriptome (44). CaMKII is a negative regulator of HDAC (43), and can also mediate transcription via direct regulation of SMAD3 (45) and CREB1 (46), all of which were shown to contribute to the LRT exercise-responsive transcriptome, making altered CaMKII regulation a feasible mediator of dysregulated transcription in LRT. Phosphorylation of CaMKIIδγ at its autoregulatory site, Thr286, was higher in LRT, both in the basal state and following exercise, indicating constitutive activation of the enzyme (Figure 5B). Constitutive activation of CaMKII in LRT was specific to the δγ isoforms of the enzyme (~55-60 kDa), as phosphorylation of the βm isoform (~70 kDa) was similar in LRT and HRT (Figure 5A), which may reflect the different subcellular localization of these isoforms (47). Given the importance of CaMKII in many aspects of muscle signal transduction and
remodeling processes (42;46), this chronic increase in CaMKII activation likely contributes to altered transcription and impaired muscle plasticity in LRT.

SMAD3 is a primary mediator of TGF-β signaling and transcription in conjunction with its binding partner SMAD2 and molecular chaperone, SMAD4 (48). To determine the mechanism behind altered exercise-induced SMAD3 transcription in LRT, we assessed canonical receptor-mediated TGFβ signaling by measuring the phosphorylation of SMAD2/3 at c-terminal residues, but found no phosphorylation of these sites in LRT and HRT skeletal muscle. Furthermore, exercise did not increase TGFβ-activated kinase (TAK1) phosphorylation in LRT or HRT (Figure 5A), confirming that canonical TGFβ signaling is not activated by exercise. TGFβ-mediated transcription can also be regulated by an alternative pathway involving phosphorylation of SMADs in their linker region (49). Exercise had no effect on SMAD3 and SMAD4 linker phosphorylation in both phenotypes (Figure 5A). In contrast, exercise robustly increased SMAD2 linker region phosphorylation (Ser245/250/255), an effect that was 3-fold greater in LRT (Figure 5C). Exercise-induced SMAD2 linker phosphorylation in skeletal muscle has not been previously reported, and therefore its functional role is not yet understood. However, investigations in cultured fibroblasts indicate that phosphorylation of the SMAD linker region inhibits canonical TGFβ signaling (49) and may shift transcription toward target genes involved in extracellular matrix synthesis (50). Thus, we postulate that this novel phosphorylation site may contribute to impaired muscle remodeling in response to exercise in LRT.

Exercise increases c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activity (51), and both JNK and p38 MAPK are upstream kinases for SMAD linker phosphorylation in vitro (50). Exercise increased JNK and p38 MAPK phosphorylation in both LRT and HRT; however the increase was ~50% greater in LRT demonstrating hyperactivation of these signaling proteins (Figure 5D & E). Based on our signal transduction and microarray analysis, we propose that the mechanism for the LRT phenotype involves the exercise-induced hyperactivation of JNK and p38 MAPK leading to increased phosphorylation of their target, SMAD2, thereby resulting in increased transcription of SMAD3 target genes in LRT (Figure 6).

DISCUSSION

We demonstrate that two-way selective breeding based on the aerobic response to exercise training generates rat models of low (LRT) and high (HRT) response to training. Our results parallel clinical data in humans indicating that in response to standardized aerobic exercise training, some individuals fail to improve their exercise capacity (non-responders), while others achieve great gains (high-responders)
The ability to enrich the trait of exercise response through selective breeding illustrates conclusively that inherited factors (genetic and epigenetic) determine this phenotype, and validates our model for the study of this complex trait. Furthermore, despite strong clinical associations (8), previous research has not uncovered causative or mechanistic links between exercise training responsiveness and metabolic disease. We now demonstrate that selective breeding for the trait of low aerobic response to exercise training leads to whole-body metabolic dysfunction, including insulin resistance, increased adiposity, dyslipidemia, and inflammation. Remarkably, metabolic dysfunction in low-responders occurred even in the absence of training- suggesting an intrinsic metabolic defect segregates with the training response phenotype. These data are the first to establish a causative relationship between training response and metabolic disease risk; providing mechanistic validation for the numerous epidemiological studies that link aerobic exercise capacity and health.

To identify the molecular mechanisms that contribute to the LRT phenotype, we designed a novel multi-level approach using bioinformatic analysis of exercise-induced alterations in RNA networks to identify signal transduction networks that regulate the molecular response to exercise. Our analysis revealed that gene networks involved in tissue remodeling are divergently regulated in LRT and HRT- a result that is consistent with analysis of gene networks regulated by exercise training in “high- and low-responder” humans (44;53). Specifically, we found that altered signaling via calcium, MAPK and TGFβ pathways led to markedly different exercise-induced transcriptional networks in LRT. The involvement of multiple interacting pathways leading to hundreds of differentially regulated genes in LRT highlights the complexity of the exercise training response. The ability to study complex networks that more closely resemble human disease represents an advantage of using selective breeding as a tool over more traditional animal models based on single-gene modifications. Furthermore, our initial investigation examining the response to moderate aerobic training sets the stage for future studies using selective breeding models to investigate adaptations resulting from different exercise training modes (i.e. resistance vs. endurance) or intensities, which have also been associated with improved metabolic health.

Akt and AMPK, which represent signaling networks that have been extensively studied in the exercise and metabolism fields, were normally activated by exercise in LRT, suggesting they are insufficient to induce training adaptations. Therefore, using an unbiased approach based on bioinformatics analysis of skeletal muscle training response in humans (44;53) and the LRT/HRT models, we tested the hypothesis that TGFβ signaling regulates the training response phenotype. The finding that exercise induces phosphorylation of SMAD2 in the linker region represents a novel exercise-regulated residue in skeletal...
muscle. Furthermore, exercise-induced SMAD2 linker phosphorylation was 3-fold higher in LRT, suggesting altered TGFβ signaling contributes to the “exercise-resistant” phenotype. Due to its novelty, the role of SMAD2 linker phosphorylation in skeletal muscle is not known. However, investigations using cancer cell models demonstrate that SMAD linker region phosphorylation antagonizes canonical TGFβ signaling and may shift transcription of target genes toward those related to the extracellular matrix and tissue remodeling (49;50). At the whole-body level, LRT had 2-fold lower levels of circulating TGFβ1 following exercise training compared to HRT, providing further evidence that altered TGFβ signaling is a key feature of the LRT phenotype. TGFβ is a potent stimulator of angiogenesis (54), and therefore represents a plausible mechanism for impaired skeletal muscle angiogenesis in LRT.

Dysregulated interactions between the MAPK and TGFβ signaling pathways are thought to be responsible for many disease states, including fibrosis and metastatic carcinoma (49;50). We now identify hyperactivation of JNK and P38 MAPK in response to exercise as a likely mechanism for enhanced SMAD2 linker phosphorylation in LRT (Figure 6). MAPK activation is considered to be a normal response to acute exercise (51). However, chronic hyperactivation of JNK and P38 MAPK independent of exercise are associated with obesity, inflammation and insulin resistance (28;55)- all of which are consistent with the LRT disease risk phenotype. TNFα was 2-fold higher in LRT following exercise training, and is a potent mediator of inflammation and a known activator of MAPK in muscle (27). Therefore, it is feasible that an exercise-induced inflammatory response interferes with TGFβ signaling and impairs muscle remodeling following exercise, contributing to the LRT phenotype. In line with this assertion, we found altered target gene expression of CREB1 and SMAD3 in response to acute exercise in LRT skeletal muscle, which are common mediators of the MAPK and TGFβ pathways (56;57).

In summary, using artificial selective breeding as a tool, we have generated animal models that establish physiological, tissue-specific, and molecular links between resistance to aerobic exercise training and metabolic disease. At the whole-body level, selective breeding for low response to exercise training caused significant metabolic dysfunction, including increased adiposity, insulin resistance and inflammation. In skeletal muscle, LRT displayed impaired exercise-induced angiogenesis- yet a normal increase in mitochondrial capacity- indicating that the ‘supply’ side of aerobic energy transfer is limiting to exercise capacity, rather than the ‘demand’ side. At the molecular level, increased stress and mitogenic signaling in response to acute exercise resulted in altered exercise-induced gene transcription in LRT. Furthermore, we identified a potentially novel role for TGFβ1 in exercise training adaptations and discovered that SMAD2 linker phosphorylation is regulated by exercise and associated with the “exercise-
resistant” phenotype of LRT. Using this powerful biological model-system we have discovered signaling networks that can be investigated as therapeutic targets for enhancing the improvement of aerobic capacity with exercise and thus the attenuation of metabolic disease in humans.

Acknowledgements

This work was supported by National Institutes of Health grants RO1AR042238 and DK068626 (L.J.G) and Diabetes Research Center 5P30 DK 36836 (Joslin Diabetes Center) and DK089503 (University of Michigan). The HRT LRT rat models are supported by the Department of Anesthesiology, University of Michigan Medical School, Michigan Diabetes Research and Training Center (NIH5P60 DK20572-P/FS to L.G.K.), National Center for Research Resources (R24 RR017718 to L.G.K. and S.L.B) and current support by Office of Research Infrastructure Programs/OD grant (ROD012098A) from the National Institutes of Health (to L.G.K. and S.L.B.). S.L.B. was also supported by National Institutes of Health grant RO1 DK077200. R.A.F. is supported by the USDA, under agreement No. 58-1950-0-014 and D.A.R. is supported by the Boston Claude D. Pepper Center OAIC (1P30AG031679). This work was also supported by FP7 EU grant (J.A.T., T.G. and P.L.G.; METAPREDICT) and a grant from the Wallenberg Foundation, Sweden (T.G.). S.J.L. is supported by postdoctoral fellowships from the American Physiological Society (Physiological Genomics) and the Canadian Diabetes Association.

The LRT and HRT models were created and are maintained at the University of Michigan, and are available for collaborative study (contact: brittons@umich.edu or lgkoch@umich.edu). The authors acknowledge Animal Technicians Lori Gilligan and Molly Kalahar (University of Michigan) for expert care and exercise training of the LRT and HRT rat colonies.

L.J.G. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. S.J.L., P.L.G., S.L.B., R.A.F., L.G.K. and L.J.G. designed the experiments; S.J.L., D.A.R., A.B.A.-W., M.F.H., I.G., D.C.-T., R.A., N.R.Q. and T.G. performed the experiments; S.J.L., D.A.R., D.C.-T., J.A.T. and L.G.K. analyzed the data; S.J.L., J.A.T., L.G.K. and L.J.G. wrote and edited the manuscript. The authors have no conflicts of interest to report.
REFERENCES

8. Church,T: The lowfitness phenotype as a risk factor: more than just being sedentary? *Obesity (Silver Spring)* 17 Suppl 3:S39-S42, 2009

Table 1: Plasma measurements taken from sedentary (SED) and exercise-trained (EXT) low (LRT) and high (HRT) responders to exercise training. *P<0.05 vs corresponding LRT value by Tukey posthoc testing. n=10/group.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Exercise</th>
<th>LRT SED</th>
<th>LRT EXT</th>
<th>HRT SED</th>
<th>HRT EXT</th>
<th>Phenotype</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin (ng/mL)</td>
<td></td>
<td>1.04 ± 0.10</td>
<td>1.01 ± 0.10</td>
<td>0.69 ± 0.06*</td>
<td>0.78 ± 0.08*</td>
<td>P=0.002</td>
<td>P=0.75</td>
</tr>
<tr>
<td>Glucose (mM)</td>
<td></td>
<td>4.93 ± 0.10</td>
<td>4.94 ± 0.25</td>
<td>4.74 ± 0.16</td>
<td>4.89 ± 0.24</td>
<td>P=0.55</td>
<td>P=0.71</td>
</tr>
<tr>
<td>Leptin (pg/mL)</td>
<td></td>
<td>5760 ± 592</td>
<td>7115 ± 734</td>
<td>3725 ± 540*</td>
<td>4058 ± 723*</td>
<td>P<0.001</td>
<td>P=0.20</td>
</tr>
<tr>
<td>IL-1β (pg/mL)</td>
<td></td>
<td>4.27 ± 0.79</td>
<td>3.32 ± 0.60</td>
<td>3.45 ± 0.85</td>
<td>3.49 ± 0.88</td>
<td>P=0.29</td>
<td>P=0.95</td>
</tr>
<tr>
<td>IL-6 (pg/mL)</td>
<td></td>
<td>17.77 ± 4.69</td>
<td>14.63 ± 2.37</td>
<td>29.60 ± 8.23</td>
<td>16.05 ± 2.40</td>
<td>P=0.2</td>
<td>P=0.11</td>
</tr>
</tbody>
</table>
Table 2: Skeletal muscle mitochondrial capacity is similar in LRT/HRT. Citrate synthase activity was measured in whole-muscle homogenates from sedentary (SED) and exercise-trained (EXT) rats (n=6/group). Mitochondrial ATP production in response to various substrates was measured in mitochondria isolated from the soleus muscle of sedentary or exercise-trained rats (n=12/group). *P<0.05 vs corresponding SED value by Tukey Posthoc testing.

<table>
<thead>
<tr>
<th>Muscle</th>
<th>LRT SED</th>
<th>LRT EXT</th>
<th>HRT SED</th>
<th>HRT EXT</th>
<th>Phenotype</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soleus</td>
<td>316.9 ± 3.8</td>
<td>343.5 ± 15.0</td>
<td>337.1 ± 18.1</td>
<td>368.7 ± 11.6</td>
<td>P=0.1</td>
<td>P=0.04</td>
</tr>
</tbody>
</table>

Maximal ATP Production Rate (nmol/min/min mitochondrial protein)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>LRT SED</th>
<th>LRT EXT</th>
<th>HRT SED</th>
<th>HRT EXT</th>
<th>Phenotype</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyruvate/ Malate</td>
<td>3.19 ± 0.55</td>
<td>5.26 ± 0.77*</td>
<td>3.29 ± 0.50</td>
<td>4.20 ± 0.84</td>
<td>P=0.49</td>
<td>P=0.03</td>
</tr>
<tr>
<td>Glutamate/ Malate</td>
<td>3.84 ± 0.62</td>
<td>7.39 ± 1.22*</td>
<td>3.44 ± 0.67</td>
<td>5.65 ± 1.13</td>
<td>P=0.27</td>
<td>P=0.004</td>
</tr>
<tr>
<td>Glutamate/ Succinate</td>
<td>6.01 ± 0.87</td>
<td>9.33 ± 1.45</td>
<td>5.56 ± 0.94</td>
<td>6.77 ± 1.40</td>
<td>P=0.22</td>
<td>P=0.06</td>
</tr>
</tbody>
</table>
Figure 1. Exercise capacity in rats bred for low (LRT) and high (HRT) aerobic response to exercise training. (A) Exercise capacity (m) was measured using an incremental treadmill running test to exhaustion in sedentary rats at 10 and 20 wks of age, and (B) in a separate group of age-matched trained rats before (pre-training) and after (post-training) 8 wks (3d/wk) of treadmill running exercise. (C) Exercise Response was calculated as the difference in exercise capacity before and after exercise training (Exercise-Trained) for each rat. The change in exercise capacity between 10 and 20 wks of age is shown for animals in the control group (Sedentary). *P<0.05 Phenotype main effect; ^P<0.05 Exercise main effect; °P<0.05 Phenotype-Exercise Interaction by 2-way ANOVA. P-values obtained by Tukey post-hoc testing are shown. n=10-12/group.

Figure 2. Whole-body metabolic dysfunction in LRT. Fasting blood samples were collected from Sedentary and Exercise-trained LRT/HRT. (A) Plasma glucose and insulin values were used to calculate the Homeostasis Model of Insulin Resistance (HOMA-IR). (B) Glucose tolerance was assessed in sedentary rats following an intraperitoneal (IP) injection of 2g/kg glucose and the area under curve (AUC) was calculated. (C) Insulin tolerance was assessed following IP injection of 0.75 U/kg insulin. (D) Body weight (E) and gonadal fat pad weight were measured in sedentary and exercise-trained LRT and HRT. (F) Plasma triglycerides, (G) TNFα, and (H) TGFβ1 concentrations were analyzed by ELISA. (I) Liver triglycerides were estimated from total liver glycerol content. *P<0.05 Phenotype main effect; ^P<0.05 Exercise main effect; °P<0.05 Phenotype-Exercise Interaction by 2-way ANOVA. P-values obtained by Tukey post-hoc testing are displayed. n=10-12/group.

Figure 3. HRT have fewer oxidative muscle fibers and impaired exercise-induced angiogenesis. Plantaris muscles from sedentary (SED) and exercise-trained (EXT) rats were frozen in N2-cooled isopentane and cut into 6 µm cross-sections. (A) Sections were stained with antibodies against laminin (white) and Myosin Heavy Chain I (green), and visualized using fluorescent secondary antibodies under 100 x magnification. Type I fiber content was expressed as % of total muscle fibers counted. (B) Capillary density (capillaries/mm2) was calculated in sections stained with an antibody against the
endothelial marker CD31 (red). Nuclei were visualized with DAPI stain (blue). n=4-5/group. *P<0.05
Phenotype main effect by 2-way ANOVA. P-values obtained by Tukey post-hoc testing are displayed.

Figure 4. Analysis of gene transcription in response to an acute bout of exercise identifies
dysregulation of SMAD, CREB, and HDAC activity in LRT. RNA was extracted from the soleus
muscles of rats under resting conditions, or 3-hours following an acute bout of treadmill running exercise.
Genes that were significantly up-regulated (red) or down-regulated (blue) in response to exercise in
LRT/HRT were identified using Affymetrix Rat ST 1.0 chips and analyzed using Ingenuity Pathway
Analysis (IPA; FDR=5%, no fold-change filter). Transcription-factor analysis in IPA clearly identified
activation of SMAD3 (Z-score=2.3; P= 1.1x10^{-7}) and CREB1 (Z-score=2.1; P= 6.7x10^{-6}) target genes,
while HDAC-regulated genes were inhibited (Z-score=-2.8; P= 1.1x10^{-7}) in response to exercise in LRT.
Direct transcription factor/target gene relationships are indicated by solid arrows, and indirect
relationships are indicated by broken arrows. No transcription factor enrichment was found in the HRT
regulated gene-list, which was a set of entirely up-regulated genes (n=156, FDR=5%, no fold-change
filter) that bore no ontological or pathway overlap with LRT dataset in IPA. n=5-6 chips/group.

Figure 5. Hyper-phosphorylation of CaMKII, SMAD2 and MAPK in LRT. (A-E) Phosphorylation of
proteins involved in calcium, MAPK and TGF-β, MAPK signaling were measured by Western Blotting in
lysates from Gastrocnemius muscle under resting conditions (Basal), or immediately following an acute
bout of exercise (Exercise). MAPK, mitogen-activated protein kinase; TGF, transforming growth factor;
JNK, c-Jun N-terminal kinase; P38, p38 mitogen-activated protein kinase; ERK, extracellular signal-
regulated kinase; SMAD, mothers against decapentaplegic homolog; CaMK, calcium/calmodulin-
dependent protein kinase. n=6-7/group. *P<0.05 Phenotype main effect; ^P<0.05 Exercise main effect;
°P<0.05 Phenotype-Exercise Interaction by 2-way ANOVA. P-values obtained by Tukey post-hoc testing
are displayed.
Figure 6. Muscle signaling in low-responders to exercise training (LRT). A proposed sequence of signaling and transcriptional regulatory events that occur in LRT was generated based on bioinformatic analysis of exercise-stimulated transcription, and Western blotting analysis of skeletal muscle samples. In response to acute exercise, LRT have hyperactivation of JNK and P38 MAPK, leading to elevated phosphorylation of SMAD2 in its linker region at Ser245/250/255. Increased exercise-induced SMAD2 linker region phosphorylation results in altered gene expression by its binding partners SMAD3 and CREB1. Constitutive activation of CaMKII by phosphorylation of its auto-regulatory site Thr286 may also contribute to altered transcription in LRT via its regulatory effects on HDAC and CREB1. Altered signal transduction and gene transcription likely lead to impaired remodeling of skeletal muscle in LRT, which in turn, may contribute to decreased exercise capacity and whole-body metabolic dysfunction. MAPK, mitogen-activated protein kinase; TGF, transforming growth factor; JNK, c-Jun N-terminal kinase; P38, p38 mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; SMAD, mothers against decapentaplegic homolog; CaMK, calcium/calmodulin-dependent protein kinase; HDAC, histone deacetylase.
Exercise Capacity: Untrained Rats

![Graph A](image)

- **LRT** (Low-Resistant Tissue) and **HRT** (High-Resistant Tissue) at 10 weeks and 20 weeks.

Exercise Capacity: Trained Rats

![Graph B](image)

- **LRT** (Low-Resistant Tissue) and **HRT** (High-Resistant Tissue) at Pre-Training and Post-Training.

Training Response

![Graph C](image)

- **Δ Exercise Capacity** for Sedentary and Exercise-Trained groups.

P < 0.001 for all comparisons.
A

HOMA-IR *

Insulin (µU) * Glucose (mM)

<table>
<thead>
<tr>
<th></th>
<th>LRT</th>
<th>HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise-Trained</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P<0.01

B

Glucose Tolerance

Blood Glucose (mM)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>LRT</th>
<th>HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AUC

C

Insulin Tolerance

Blood Glucose (mM)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>LRT</th>
<th>HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

Body Weight *

Grans

<table>
<thead>
<tr>
<th></th>
<th>LRT</th>
<th>HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise-Trained</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P=0.01

E

Fat Pad Weight *

Garms

<table>
<thead>
<tr>
<th></th>
<th>LRT</th>
<th>HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise-Trained</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P=0.03

F

Plasma Triglycerides *

mg/dL

<table>
<thead>
<tr>
<th></th>
<th>LRT</th>
<th>HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise-Trained</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G

Plasma TNFα ^

pg/mL

<table>
<thead>
<tr>
<th></th>
<th>LRT</th>
<th>HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise-Trained</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P<0.05

H

Plasma TGFβ1 **

ng/mL

<table>
<thead>
<tr>
<th></th>
<th>LRT</th>
<th>HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise-Trained</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P<0.001

I

Liver Triglycerides *

µg/mg tissue

<table>
<thead>
<tr>
<th></th>
<th>LRT</th>
<th>HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise-Trained</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P=0.01

Figure 2
Figure 3

A Type I Fibers * *

![Images showing Type I Fibers in Sedentary and Exercise-Trained groups](image)

- **LRT SED**
- **HRT SED**
- **LRT EXT**
- **HRT EXT**

<table>
<thead>
<tr>
<th></th>
<th>LRT</th>
<th>HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise-Trained</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P = 0.004

B Capillary Density * *

![Images showing Capillary Density in Sedentary and Exercise-Trained groups](image)

<table>
<thead>
<tr>
<th></th>
<th>LRT SED</th>
<th>HRT SED</th>
<th>LRT EXT</th>
<th>HRT EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise-Trained</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P = 0.008

Diabetes
Skeletal Muscle Signaling in Low Responders to Training

Exercise Training

↑TNFα

↓TGFβ1

PM

Acute Exercise

↑P38

↑JNK

↑Linker Phosphorylation

SMAD2

CaMKII

Auto-phosphorylation at T286

Nucleus

SMAD3

CREB1

HDAC

Altered exercise-induced transcription of SMAD, HDAC & CREB target genes in LRT

Impaired Skeletal Muscle Remodeling

↓Training Response & ↑Metabolic Risk

Figure 6
Plantaris muscles from sedentary (SED) and exercise-trained (EXT) rats were frozen in N2-cooled isopentane and cut into 6 µm cross-sections. (A) Sections were stained with antibodies against laminin (white) and Myosin Heavy Chain IIA (blue), and visualized using fluorescent secondary antibodies under 100 x magnification. Type IIA fiber content was expressed as % of total muscle fibers counted. n=5/group.
Figure S2. Whole-body metabolic effect of acute exercise in LRT/HRT. (A) Rats underwent a bout of exercise in a metabolic treadmill equipped for the measurement of respiratory gasses. (A) Oxygen consumption (VO2) and (B) Carbon Dioxide production (VCO2) were measured under resting conditions (Time 0) and over the course of the 20 min exercise session (15 m/min, 15% incline). (C) The respiratory exchange ratio (RER) was calculated (VO2/VCO2) as an indicator of substrate metabolism and exercise intensity. (D) Gastrocnemius muscles were collected from rats under resting conditions (Basal), immediately following acute exercise (Post-EX), or 3h following exercise (3h Post-EX), frozen and pulverized in liquid N2, and an aliquot of muscle was used for the analysis of muscle glycogen. Blood samples were collected at the same time points, and serum was used for the analysis of (E) non-esterified fatty acids (NEFA), (F) insulin, and (G) glucose. N=7-8.
Figure S3. Metabolic signaling in skeletal muscle in response to acute exercise in LRT/HRT. Phosphorylation of proteins involved in insulin and AMPK signaling were measured by Western Blotting in lysates from Gastrocnemius muscle under resting conditions (Basal), or immediately following an acute bout of exercise (Exercise). N=6-7/group. AMPK, AMP-activated protein kinase; ACC, acetyl-CoA carboxylase. ^P<0.05 Exercise main effect by 2-way ANOVA. P-values obtained by Tukey post-hoc testing are displayed.
Figure S4. Divergent transcriptomic responses to acute exercise identified by microarray analysis in LRT/HRT. RNA was extracted from the soleus muscles of rats under resting conditions, or 3-hours following an acute bout of treadmill running exercise. Genes that were significantly up-regulated or down-regulated in response to exercise in LRT/HRT were identified using Affymetrix Rat ST 1.0 chips and analyzed using Ingenuity Pathway Analysis (IPA). (A) In LRT, 193 genes were up-regulated and in HRT, 122 genes were up-regulated in response to acute exercise, with 63 of these genes being commonly upregulated in both phenotypes (FDR=5%, no fold-change filter). (B) In LRT, 133 genes were down-regulated in response to acute exercise (FDR=5%, no fold-change filter), while no genes were significantly down-regulated in response to exercise in HRT. (C) Gene ontology (GO) analysis revealed that genes uniquely regulated by exercise in LRT belonged to the functional categories of gene expression, development and cell cycle regulation. (D) In contrast, genes uniquely regulated by exercise in HRT belonged to the function categories of cellular growth, proliferation and movement, as well as skeletal and muscular development. No ontological or pathway overlap was observed between the LRT and HRT transcriptional responses to exercise. N=5-6 chips/group.