The Acceleration of the Loss of the First-Phase Insulin Response during the Progression to Type 1 Diabetes in Diabetes Prevention Trial-Type 1 Participants

Running Title: Loss of First-Phase Insulin Response

Corresponding Author: Jay M. Sosenko, MD; Division of Endocrinology; University of Miami; Miami, FL 33101; PO Box 016960 (D110); Miami, FL 33101; Phone: 305-243-6146; Fax: 305-243-4484; Email: jsosenko@med.miami.edu

Jay S. Skyler, MD; Division of Endocrinology; University of Miami; Miami, Florida

Craig A. Beam, PhD; Division of Informatics and Biostatistics; University of South Florida; Tampa, Florida

Jeffrey P. Krischer, PhD; Division of Informatics and Biostatistics; University of South Florida; Tampa, Florida

Carla J. Greenbaum, MD; Benaroya Research Institute at Virginia Mason; Seattle, WA

Jeffrey Mahon, MD; Department of Epidemiology and Biostatistics; University of Western Ontario, London ,ON

Lisa E. Rafkin, MS; Division of Endocrinology; University of Miami; Miami, Florida

Della Matheson; Division of Endocrinology; University of Miami; Miami, Florida

Kevan C. Herold, MD; Department of Immunobiology, Yale University School of Medicine; New Haven, Connecticut

Jerry P. Palmer, MD; VA Puget Sound Health Care System; Division of Endocrinology, Metabolism, and Nutrition; University of Washington; Seattle, Washington

The Diabetes Type 1 TrialNet and Diabetes Prevention Trial-Type 1 Study Groups (see Online Appendix)

Word Count: 2,422

Tables: 3

Figures: 2
ABSTRACT

We studied the change in the first-phase insulin response (FPIR) during the progression to type 1 diabetes (T1D). Seventy-four oral insulin trial progressors to T1D of the Diabetes Prevention Trial-Type 1 with at least one FPIR measurement after baseline and before diagnosis were studied. The FPIR was examined longitudinally in 26 progressors who had FPIR measurements during each of the 3 years before diagnosis. The association between the change from the baseline FPIR to the last FPIR and time to diagnosis was studied in the remainder (n=48). The 74 progressors had lower baseline FPIR values than non-progressors (n=270) with adjustments for age and BMI. In the longitudinal analysis of the 26 progressors, there was a greater decline in the FPIR from 1.5 to 0.5 years before diagnosis than from 2.5 to 1.5 years before diagnosis. This accelerated decline was also evident in a regression analysis of the 48 remaining progressors in whom the rate of decline became more marked with the approaching diagnosis. The patterns of decline were similar between the longitudinal and regression analyses. There is an acceleration of decline in the FPIR during the progression to T1D which becomes especially marked between 1.5 and 0.5 years before diagnosis.
INTRODUCTION

A low first-phase insulin response (FPIR) to intravenous glucose is considered to be an indicator of faltering β-cell function, and is a predictor of type 1 diabetes (T1D) (1-4). Yet there have been no descriptions of changes in the FPIR during the progression to T1D. Such information could be of value for optimizing the timing of interventions to prevent the loss of β-cells. We have therefore utilized FPIR measurements from the serial intravenous glucose tolerance tests (IVGTTs) obtained in the oral insulin trial of the Diabetes Prevention Trial-Type 1 (DPT-1) (5) to describe the decline of the FPIR during the progression to T1D.

RESEARCH DESIGN AND METHODS

Subjects

Individuals included in the analysis participated in the DPT-1 oral insulin trial (5). All oral insulin trial participants were relatives of T1D patients who were positive for islet cell autoantibodies and insulin autoantibodies. They initially had normal oral glucose tolerance (fasting glucose value <110 mg/dl; 30-, 60-, and 90-minute values <200 mg/dl; 2-hr value <140 mg/dl), and were above defined FPIR thresholds [≥100 µU/ml for ≥8.0 years (with the exception of ≥60 µU/ml for parents of T1D patients); ≥60 µU/ml for<8.0 years]. IVGTTs were performed at baseline and then at yearly intervals. DPT-1 parenteral trial participants (6) were not included in the analyses, since they only had IVGTTs at 2-year intervals, and many in that trial were selected on the basis of having low FPIR values. T1D was diagnosed either by oral glucose tolerance test (OGTT) surveillance according to standard ADA criteria, or by clinical presentation. Two non-progressors with baseline FPIR values of 675µU/ml and 953 µU/ml
µU/ml being the next highest value) were excluded from the analysis because they were outliers.
In addition, 3 others were excluded because of missing values.

Procedures

The IVGTTs were performed after a minimum 10-hr fast. A standard infusion of 0.5 g/kg to a maximum of 35 g at a 25% glucose concentration was administered over a 3-minute period. Samples were obtained in the fasting state and at 1, 3, 5, 7, and 10 minutes. The FPIR was defined as the sum of the insulin measurements at 1 and 3 minutes. Insulin was measured by radioimmunoassay (coefficient of variation <8.5%) (7). There was high cross-reactivity with proinsulin. Autoantibody procedures for DPT-1 have been previously described (8).

Data Analysis

In order for progressors to be included in the analysis, at least one additional FPIR measurement before diagnosis was required. There were 74 progressors who fulfilled this criterion, of whom 44 (59%) were diagnosed through a surveillance OGTT. (Table 1 of the Online Appendix shows that there were no significant differences in baseline characteristics between the progressors included and the progressors excluded in the analysis.) There were no significant differences between the 35 (47%) on oral insulin and the 39 (53%) on placebo in the baseline FPIR values or in the changes from the baseline FPIR to the last FPIR. Two analyses were used to examine changes in the FPIR during the progression to T1D in these individuals. A longitudinal analysis (Analysis 1) examined serial FPIR values in the 26 progressors who had 3 IVGTTs after the baseline IVGTT: 2-3 years before diagnosis, 1-2 years before diagnosis, and within 1 year of diagnosis (see flow chart in Online Appendix). In the Results section, the mean times from diagnosis of the FPIR measurements within each of the yearlong intervals are shown for simplicity.
In the other analysis (Analysis 2), the change in the FPIR value per year from the baseline FPIR to the last FPIR before diagnosis was calculated for each individual (n=74). The change in the FPIR per year was then used as the dependent variable for simple linear regression and multiple regression models. The independent variable of interest was the time to diagnosis from the midpoint of the time interval between the baseline FPIR and the last FPIR (Figure 1). The other variables included in the multiple regression analysis were the FPIR measurement at baseline, and the time between the baseline and the last FPIR measurements. Coefficients from the multivariate model were used to develop a curve describing the change in the FPIR during the progression to T1D (see Online Appendix) in the 48 progressors who were not included in Analysis 1. The pattern of the change in the FPIR during progression in those individuals was then compared with the pattern of change in the 26 progressors studied in Analysis 1.

T-tests and Wilcoxon Rank Sum tests were utilized for comparisons. Analyses of covariance were used to adjust for comparisons between groups. The SAS 9.1.3 version was utilized for the analyses. The p-values are 2-sided. Although a p-value <0.05 was considered to be statistically significant, Bonferroni corrections are also shown.

RESULTS

Table 1 shows comparisons of baseline characteristics between the 74 progressors (76% of all progressors in the oral insulin trial) who had at least one FPIR measurement after the baseline measurement (those included in the analyses below), and 270 non-progressors (those not diagnosed during follow-up). Aside from the younger age of the progressors (p=0.003), there were initially no significant differences in FPIR, log BMI and gender. However, since the FPIR
was associated with both age (r=0.17; p=0.001) and log BMI (r=0.38; p<0.001), we compared the FPIR between the progressors and non-progressors after adjusting for those variables. The baseline FPIR was significantly lower in the progressors (p<0.020) with the adjustments. Also, with adjustments for age and gender, the BMI was significantly higher in the progressors (p=0.035). The median duration of follow-up for the oral insulin trial participants was 4.3 years.

Analysis 1

Twenty-six of the 74 progressors analyzed had FPIR measurements at baseline (mean±SD: 4.4±3.4 years before diagnosis), <3.0 years to ≥2.0 years before diagnosis (2.5±0.3 years), <2.0 years to ≥1.0 year before diagnosis (1.5±0.3 years), and <1.0 year before diagnosis (0.5±0.2 years). Table 2 shows FPIR values of those individuals according to the time before diagnosis, along with the percent change in the FPIR (per year) from the preceding FPIR. (Data are presented in the table and below according to the mean time from diagnosis of the FPIR measurements within each of the yearlong intervals.) There was a small decline in the FPIR from baseline until 1.5 years before diagnosis, with no evidence of acceleration. The decline then accelerated from 1.5 years before diagnosis to 0.5 years before diagnosis. The median (with 25th and 75th quartiles) percent change in the FPIR from 2.5 years to 1.5 years before diagnosis was -4.1% (-29.8%,30.2%)(n.s.), whereas the median percent change from 1.5 years to 0.5 years before diagnosis was -29.3% (-56.4%, -3.5%) (p<0.001). Of the 26, the FPIR declined in 21 from 1.5 years to 0.5 years before diagnosis, and in 14 from 2.5 to 1.5 years before diagnosis. Compared to the change from 2.5 years to 1.5 years before diagnosis, there was a decline (vs. a prior increase) or a more marked decline from 1.5 to 0.5 years before diagnosis in 16. The
median overall percent change from the baseline FPIR to the last FPIR was -47.7% (-58.2%,-27.7%) (p<0.001).

Another measure of the insulin response, the mean of the values from 1,3,5,7, and 10 minutes, was also examined longitudinally in 25 progressors (one less due to a missing value). The pattern was similar to the FPIR: 53±22 µU/ml at baseline; 50±32 µU/ml at 2.5 years; 47±26 µU/ml at 1.5 years; 33±2 µU/ml at 0.5 years. The differences were significant from baseline to 2.5 years and from 1.5 years to 0.5 years (p=0.025 and p<0.001, respectively).

The longitudinal pattern of FPIR values was also examined in the 111 non-progressors who had FPIR measurements approximately 2 years (2.5 to 1.5 years) and 1 year (1.5 to 0.5 years) from the last FPIR measurement. There was a small, non-significant increase over time (2 years: 158±81 µU/ml; 1 year: 162±74 µU/ml; last: 168±93 µU/ml).

Analysis 2

Since the findings in Analysis 1 suggested that the rate of decline accelerates with progression, we performed another analysis to further assess this possibility in all 74 progressors who had at least one FPIR measurement after the baseline measurement. For this analysis (Figure 1), the difference between the baseline FPIR and last FPIR before diagnosis was calculated for each of those progressors. The interval between the last FPIR measurement and diagnosis was 0.76±0.66 years. In univariate linear regression (Table 3), there was a significant association between the decline per year from the baseline FPIR to the last FPIR and the proximity to diagnosis (p<0.05). The association was more pronounced (p<0.001) with adjustments for the baseline FPIR and the length of the interval between the FPIR measurements.
The same regression analyses were also performed in the 48 progressors who did not meet the multiple FPIR measurement criteria, and thus were not included in Analysis 1; the association was again apparent (Table 3). To further examine the association between the decline of the FPIR and the time from diagnosis, the 48 progressors were divided according to the median time from diagnosis, which was 1.66 years. In a univariate analysis, those <1.66 years from diagnosis had a greater rate of decline (72.0±29.0 µU/ml per year from diagnosis; p=0.021) than those >1.66 years from diagnosis (11.2±13.6 µU/ml per year from diagnosis; n.s.). This difference was also evident in the multivariate analysis [<1.66 years from diagnosis: 76.6±23.9 µU/ml per year from diagnosis (p=0.004); >1.66 years from diagnosis: 35.4±12.7 µU/ml per year from diagnosis (p=0.011)].

Comparison of Findings between Analysis 1 and Analysis 2

In order to further examine the consistency of the findings between Analysis 1 and Analysis 2, we utilized the regression coefficients from the 48 progressors excluded from Analysis 1 to develop a curve describing the change in the FPIR with the approaching diagnosis. This is shown in Figure 2 along with the curve of those followed longitudinally in Analysis 1. (Baseline characteristics of the two groups are shown in Tables 2 and 3 of the Online Appendix. There were no significant differences.) Starting from the same value (116.4 µU/ml) as the mean of the FPIR 2.5 years before diagnosis of those followed longitudinally, the pattern of decline was almost the same: a gradual decline from 2.5 to 1.5 years before diagnosis, followed by a steep decline from 1.5 to 0.5 years before diagnosis. Thus, using separate samples and different
analyses, the pattern of decline predicted by the regression procedure (Analysis 2) was consistent with the actual decline (Analysis 1).

DISCUSSION

The findings showed that the decline in the FPIR during the progression to T1D accelerates as the diagnosis approaches. This was evident in the two separate samples of the progressors who were studied. In the longitudinal analysis of serial FPIRs (Analysis 1), there was a gradual loss that was followed by a more substantial loss. In the regression analysis (Analysis 2), there was an association between the rate of loss of the FPIR and the proximity to diagnosis of T1D both for all the progressors and with the exclusion of those in Analysis 1.

The high degree of consistency of the findings, derived from different samples of progressors and different analyses, provides additional supporting evidence for the acceleration of the decline in the FPIR. Although the curves appear to show an abrupt increase in the acceleration of decline, this is not necessarily the case; the acceleration could occur in a more gradual manner. Still, the data clearly show that the decline in the FPIR becomes more rapid as the diagnosis of T1D approaches. The acceleration appears to become especially marked between 1.5 and 0.5 years before diagnosis. Interestingly, this time period appears to coincide with the time that the loss of β-cell sensitivity to glucose becomes appreciable (9).

The overall loss of the FPIR from the baseline measurement to the last measurement was marked in the 26 progressors followed longitudinally, with a decline of 47.7% by 0.5 years before diagnosis. However, the extent of insulin loss prior to diagnosis is almost certainly greater for several reasons. It is likely that there already had been some loss of the FPIR before the baseline
measurement, since the baseline FPIR values were lower in the progressors than in the non-progressors with adjustments for age and BMI. In addition, the shape of the curves in Figure 2 and data from an analysis of serial OGTTs (10) suggest that the rate of decline could be even greater during the last six months before diagnosis. Finally, DPT-1 participants were mostly diagnosed by OGTT surveillance, rather than by clinical presentation (11).

The longitudinal analysis for the non-progressors showed little change in the FPIR over time. The interpretation of FPIR trends in the non-progressors is complicated by the likelihood that a number of them would have been diagnosed with further follow-up.

No prior studies have described the pattern of decline of the FPIR during the progression to T1D. The oral insulin trial was unique in that such a large number of autoantibody positive individuals were followed with serial IVGTTs at yearly intervals. We have previously shown that the 30-0 minute C-peptide difference from oral glucose tolerance testing (which correlates with the FPIR) also declines appreciably during progression (12).

It is possible that the findings pertaining to the loss of the FPIR are not fully representative. Those studied were all relatives of T1D patients. Also, the criteria for inclusion in the longitudinal analyses could have excluded faster progressors. However, data from prior studies suggest that T1D characteristics are similar between T1D patients who have relatives with T1D and T1D patients who have no relatives with the disease (sporadic cases) (13-15). Moreover, 76% of the progressors in the oral insulin trial were included in the analyses.

The basis for the accelerating decline in the FPIR is unclear. Although several explanatory hypotheses can be formulated, it would be important to discern whether the accelerated decline of the FPIR is the result of the primary pathogenetic process or whether it relates more to
secondary factors, such as the possible impact of increasing glucose levels on β-cells during progression. It is possible that an impaired β-cell could be particularly susceptible to small changes in glucose; however, there are no data available to support this.

In conclusion, the findings show that the loss of β-cell function accelerates well before the diagnosis of T1D. Thus, as treatments that preserve insulin secretion become available, it will be essential to identify individuals as early as possible during progression. With this in mind, there is a need refine our ability to identify very high risk individuals years before diagnosis, and to test potential interventions at that time.

AUTHOR CONTRIBUTIONS

Jay Sosenko: Analyzing data and writing manuscript; Jay Skyler: Conducting study and reviewing manuscript; Craig Beam: Statistical support; Jeffrey Krischer: Conducting study and reviewing manuscript; Carla Greenbaum: Conducting study and reviewing manuscript; Jeffrey Mahon: Reviewing manuscript; Lisa Rafkin: Conducting study and reviewing manuscript; Della Matheson: Conducting study and reviewing manuscript; Kevan Herold: Reviewing manuscript; Jerry Palmer: Conducting study, reviewing manuscript, and assisting in writing manuscript

ACKNOWLEDGEMENTS

The sponsor of the trial was the Type 1 Diabetes TrialNet Study Group. Type 1 Diabetes TrialNet Study Group is a clinical trials network funded by the National Institutes of Health (NIH) through the National Institute of Diabetes and Digestive and Kidney Diseases, the
National Institute of Allergy and Infectious Diseases, and The Eunice Kennedy Shriver National Institute of Child Health and Human Development, through the cooperative agreements U01 DK061010, U01 DK061016, U01 DK061034, U01 DK061036, U01 DK061040, U01 DK061041, U01 DK061042, U01 DK061055, U01 DK061058, U01 DK084565, U01 DK085453, U01 DK085461, U01 DK085463, U01 DK085466, U01 DK085499, U01 DK085505, U01 DK085509, and a contract HHSN267200800019C; the National Center for Research Resources, through Clinical Translational Science Awards UL1 RR024131, UL1 RR024139, UL1 RR024153, UL1 RR024975, UL1 RR024982, UL1 RR025744, UL1 RR025761, UL1 RR025780, UL1 RR029890, UL1 RR031986, P30 DK017047, and General Clinical Research Center Award M01 RR00400; the Juvenile Diabetes Research Foundation International (JDRF); and the American Diabetes Association (ADA). The contents of this Article are solely the responsibility of the authors and do not necessarily represent the official views of the NIH, JDRF, or ADA. No potential conflicts of interest were reported. Dr. Jay Sosenko is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
REFERENCES

1) Vardi P, Crisa L, Jackson RA: Predictive value of intravenous glucose tolerance test insulin secretion less than or greater than the first percentile in islet cell antibody positive relatives of type 1 (insulin-dependent) diabetic patients. Diabetologia 1991; 34:93–102

9) Ferrannini E, Mari A, Nofrata V, Sosenko JM, Skyler JS, DPT-1 Study Group. Progression to

11) Triolo TM, Chase HP, Barker JM, DPT-1 Study Group: Diabetic subjects diagnosed through the Diabetes Prevention Trial-Type 1 (DPT-1) are often asymptomatic with normal A1C at diabetes onset. Diabetes Care 2009;32:769-773

12) Sosenko JM, Palmer JP, Rafkin-Mervis L, Krischer JP, Cuthbertson D, Greenbaum CJ, Eisenbarth G, Skyler JS, Diabetes Prevention Trial-Type 1 Study Group: Trends of earlier and later responses of C-peptide to oral glucose challenges with progression to type 1 diabetes in Diabetes Prevention Trial-Type 1 participants. Diabetes Care 2010;33:620–625

Table 1. Baseline characteristics of progressors to T1D with at least one FPIR measurement after baseline and non-progressors

<table>
<thead>
<tr>
<th></th>
<th>Progressors (n=74)</th>
<th>Non-Progressors (n=270)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPIR (µU/ml)</td>
<td>144±84</td>
<td>158±74*</td>
<td>0.020*</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>9.9±6.4</td>
<td>12.7±8.9*</td>
<td>0.003</td>
</tr>
<tr>
<td>Log BMI (kg/m(^2))</td>
<td>2.97±0.20 (n=71)</td>
<td>2.97±0.23 (n=259)</td>
<td>0.035**</td>
</tr>
<tr>
<td>Male (%)</td>
<td>59</td>
<td>61</td>
<td>0.752</td>
</tr>
</tbody>
</table>

[Mean±SD is shown for continuous variables]
* With adjustments for age and BMI
** With adjustments for age and gender

(With the Bonferroni corrections, the p-Values were not significant (threshold: <0.013) for the differences in the FPIR and the Log BMI)
Table 2. FPIR values and the percent change from the previous values according to the time before diagnosis in 26 progressors

<table>
<thead>
<tr>
<th>Time before Diagnosis*</th>
<th>4.4 Years (Baseline)</th>
<th>2.5 Years</th>
<th>1.5 Years</th>
<th>0.5 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPIR (µU/ml) (mean±SD)</td>
<td>127±52</td>
<td>116±76</td>
<td>112±71</td>
<td>75±50</td>
</tr>
<tr>
<td></td>
<td>[0.042]</td>
<td>[0.042]</td>
<td>[0.815]</td>
<td>[<0.001]</td>
</tr>
<tr>
<td>% Change/Year</td>
<td>-11.2 (-25.1,0.0)</td>
<td>-4.1 (-29.8,30.2)</td>
<td>-29.3 (-56.4,-3.5)</td>
<td></td>
</tr>
<tr>
<td>[median (quartiles)]</td>
<td>[0.039]</td>
<td>[0.912]</td>
<td>[0.001]</td>
<td></td>
</tr>
</tbody>
</table>

*The mean times before diagnosis are indicated for baseline, and the 2-3 year, 1-2 year and <1 year intervals. [P-values for change per year from previous FPIR measurement are in brackets.] (With the Bonferroni corrections, p-Values were not significant (threshold: <0.017) for the change in the FPIR/Year from 4.4 to 2.5 Years and for the % Change/Year from 4.4 to 2.5 Years.)
Table 3. Multiple regression analysis for association of change in FPIR* [(last - baseline)/year] with years to diagnosis** in progressors to T1D

<table>
<thead>
<tr>
<th></th>
<th>Univariate</th>
<th></th>
<th>Multivariate***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient±SE</td>
<td>p-Value</td>
<td>Coefficient±SE</td>
</tr>
<tr>
<td>All (n=74)</td>
<td>13.8±5.7</td>
<td>0.019</td>
<td>28.3±5.8</td>
</tr>
<tr>
<td>Analysis 1 Excluded (n=48)</td>
<td>15.9±7.9</td>
<td>0.049</td>
<td>31.0±4.7</td>
</tr>
</tbody>
</table>

The coefficients represent the rate of change in the FPIR per year from the baseline FPIR to the last FPIR vs. the number of years from diagnosis. Thus, the positive coefficients indicate that the rate of loss becomes greater (more negative) as the time from diagnosis decreases.

**Defined as time of diagnosis to middle of interval between baseline and last FPIR

***Covariates in model were baseline FPIR and time between baseline and last FPIR (see Online Appendix for regression equations)
FIGURE LEGENDS

Figure 1

Shown are diagrammatic representations of the variables of interest included in Analysis 2. The time to diagnosis and the times between the first and last FPIR are shown in four hypothetical individuals.

Figure 2

Shown are curves of FPIR values during the progression to T1D from the actual serial values of the progressors in Analysis 1 and the values derived from the regression model for the other progressors from Analysis 2. The curve for Analysis 1 is plotted according to the mean times from diagnosis of the FPIR measurements within each of the yearlong intervals. For the purpose of comparison, the curve from Analysis 2 was assigned the same starting value of 2.5 years and was plotted according to the same time points. The patterns are similar with a gradual decline from 2.5 to 1.5 years and a marked decline from 1.5 to 0.5 years before diagnosis.
Figure 1

Association of Interest:

\[
\frac{(Last \ FPIR - First \ FPIR)}{Year} \ vs. \ Time \ to \ Diagnosis
\]
Figure 2

First Phase Insulin Response (μU/ml) vs. Years Before Diagnosis

- Regression (n=48)
- Actual (n=26)
ONLINE APPENDIX

Analysis for Figure 2

The regression equation below was used to calculate the estimated change in the FPIR per month.

\[
\Delta \text{FPIR/month} = 0.250 + 0.215 \times \text{Time to Diagnosis (Months)} - 0.030 \times \text{FPIR (µU/ml)} - 0.087 \times \text{Interval (Months)}
\]

An iterative procedure was utilized to calculate new FPIR values for each change per month, with a 116.4 µU/ml starting value. This was the mean value 2.5 years before diagnosis for the group studied longitudinally. The first two iterations are described by the equations below with “t” indicating the time to diagnosis in months.

1\text{st} Iteration: \(\text{FPIR}_t = \text{FPIR}_{(t-1)} + \Delta \text{FPIR}_{(t,t-1)}\)

2\text{nd} Iteration: \(\text{FPIR}_t = \text{FPIR}_{(t-2)} + \Delta \text{FPIR}_{(t-1,t-2)}\)

These iterations were then repeated for each month until 6 months before diagnosis.
Online Appendix Table 1. Baseline characteristics of progressors included and excluded from the analyses

<table>
<thead>
<tr>
<th></th>
<th>Included (n=74)</th>
<th>Excluded (n=24)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPIR (µU/ml)</td>
<td>144±84</td>
<td>140±62</td>
<td>0.648</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>9.9±6.4</td>
<td>12.4±9.1 (n=23)</td>
<td>0.146</td>
</tr>
<tr>
<td>Log BMI (kg/m²)</td>
<td>2.97±0.20 (n=71)</td>
<td>3.05±0.27</td>
<td>0.433</td>
</tr>
<tr>
<td>Gender (%)</td>
<td>59</td>
<td>46</td>
<td>0.242</td>
</tr>
</tbody>
</table>

[Mean±SD is shown for continuous variables]
* With adjustments for age and BMI
** With adjustments for age and gender

Online Appendix Table 2. Baseline characteristics of the groups of progressors compared in Figure 2

<table>
<thead>
<tr>
<th></th>
<th>Actual (n=26)</th>
<th>Regression (n=48)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPIR (µU/ml)</td>
<td>127±52</td>
<td>153±97</td>
<td>0.371*</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>8.4±3.7</td>
<td>10.7±7.4</td>
<td>0.070</td>
</tr>
<tr>
<td>Log BMI (kg/m²)</td>
<td>2.92±0.22 (n=24)</td>
<td>3.00±0.19 (n=47)</td>
<td>0.242**</td>
</tr>
<tr>
<td>Gender (%)</td>
<td>54</td>
<td>63</td>
<td>0.469</td>
</tr>
</tbody>
</table>

[Mean±SD is shown for continuous variables]
* With adjustments for age and BMI
** With adjustments for age and gender
Online Appendix Table 3. Autoantibody positivity of the groups of progressors compared in Figure 2

| | Actual
| | (n=26) | Regression*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(n=47)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GADA</td>
<td>19 (73%)</td>
<td>30 (64%)</td>
<td>0.421</td>
</tr>
<tr>
<td>IA-2A</td>
<td>14 (54%)</td>
<td>23 (49%)</td>
<td>0.688</td>
</tr>
</tbody>
</table>

*1 missing value for GADA and IA-2A
Flow Chart for Oral Trial Participants in Analysis

Enrolled in oral insulin trial
(n=372)

Those with missing values and outliers excluded
(n=367)

Progressors without IVGTT after baseline excluded
(n=74)

Non-Progressors
(n=270)

Progressors without 3 IVGTTs after baseline excluded
(n=26)
Regression Equations for Table 3

All (n=74)

Univariate:
ΔFPIR/Year=−46.1+13.8*[Time to Diagnosis (Years)]

Multivariate:
ΔFPIR/Year=−0.5+28.3*[Time to Diagnosis (Years)]−0.33*[Baseline FPIR (µU/ml)]−10.7*[Interval (Years)]

Analysis 1 Excluded (n=48)

Univariate:
ΔFPIR/Year=−49.4+15.9*[Time to Diagnosis (Years)]

Multivariate:
ΔFPIR/Year=3.0+31.0*[Time to Diagnosis (Years)]−0.36*[Baseline FPIR (µU/ml)]−12.5*[Interval (Years)]
Type 1 Diabetes TrialNet Study Group

Steering Committee: Jay S. Skyler (University of Miami Diabetes Research Institute), Chairman; Mark Anderson (University of California San Francisco), Katarzyna Bourcier (NIAID), Dorothy Becker (University of Pittsburgh), Penelope Bingley (University of Bristol), Janice Blum (Indiana University), Emanuele Bosi (San Raffaele Hospital), Jane Buckner (Benaroya Research Institute), H. Peter Chase (University of Colorado Barbara Davis Center for Childhood Diabetes), Michael Clare-Salzler (University of Florida), Peter Colman (Walter and Eliza Hall Institute of Medical Research), Linda DiMeglio (Indiana University), George S. Eisenbarth (University of Colorado Barbara Davis Center for Childhood Diabetes), C. Garrison Fathman (Stanford University), Stephen Gitelman (University of California San Francisco), Robin Goland (Columbia University), Peter Gottlieb (University of Colorado Barbara Davis Center for Childhood Diabetes), Gilman Grave (NICHHD), Carla Greenbaum (Benaroya Research Institute), Leonard Harrison (Walter and Eliza Hall Institute of Medical Research), Kevan Herold (Yale University), Richard Insel (Juvenile Diabetes Research Foundation), Jeffrey P. Krischer (University of South Florida), Jeffrey Mahon (University of Western Ontario), Jennifer Marks (University of Miami Diabetes Research Institute), Antoinette Moran (University of Minnesota), Jerry P. Palmer (University of Washington), Mark Peckman (Guy’s, King’s, and St. Thomas’ School of Medicine), Alberto Pugliese (University of Miami Diabetes Research Institute), Philip Raskin (University of Texas Southwestern Medical School), Maria Grazia Roncarolo (San Raffaele Scientific Institute), William Russell (Vanderbilt University), Peter Savage (NIDDK), Desmond Schatz (University of Florida), Robert Sherwin (Yale University), Mark Siegelman (University of Texas Southwestern Medical School), Olli Simell (Hospital District of Southwest Finland), James Thomas (Vanderbilt University), Massimo Trucco (University of Pittsburgh), John Wagner (University of Minnesota), Diane Wherrett (University of Toronto), Darrell M. Wilson (Stanford University), William Winter (University of Florida), Judith Fradkin (NIDDK, ex-officio), Ellen Leschek (NIDDK, ex-officio), Lisa Spain (NIDDK, ex-officio).

Past Members: Christophe Benoist (Joslin Diabetes Center), Jeffrey Bluestone (University of California San Francisco), David Brown (University of Minnesota), Catherine Cowie (NIDDK), Bernard Hering (University of Minnesota), Stanley Jordan (Cedars-Sinai Medical Center), Francine R. Kaufman (Childrens Hospital Los Angeles), John M. Lachin (George Washington University), Kirsti Nanto-Salonen (Hospital District of Southwest Finland), Gerald Nepom (Benaroya Research Institute), Tihamer Orban (Joslin Diabetes Center), Robertson Parkman (Childrens Hospital Los Angeles), Mark Pescovitz (Indiana University), John Peyman (NIAID), John Ridge (NIAID), Henry Rodriguez (Indiana University), Anette Ziegler (Institut für Diabetesforschung).
Executive Committee: Jay S. Skyler, Katarzyna Bourcier, Carla J. Greenbaum, Jeffrey P. Krischer, Ellen Leschek, Lisa Rafkin (University of Miami Diabetes Research Institute), Peter Savage, Lisa Spain.

Past Members: Catherine Cowie, Mary Foulkes (George Washington University), Heidi Krause-Steinrauf (George Washington University), John M. Lachin, Saul Malozowski (NIDDK), John Peyman, John Ridge, Stephanie J. Zafonte (George Washington University).

Chairman's Office: Jay S. Skyler, Carla J. Greenbaum, Norma S. Kenyon, Lisa Rafkin, Irene Santiago, Jay M. Sosenko

TrialNet Coordinating Center (University of South Florida): Jeffrey P. Krischer, Brian Bundy, AQesha Luvon Ritzie, Michael Abbondondolo, Timothy Adams, Persida Alies, Franz Badias, Craig Beam, Matthew Boonstra, David Boulware, David Cuthbertson, Christopher Eberhard, Julie Ford, Jinin Ginem, Heather Guillette, Brian Hays, Martha Henry, Pat Law, Cristin Linton, Shu Liu, Jennifer Lloyd, Sarah Muller, Ryan O’Donnell, Yazandra Parrimon, Kate Paulus, Jennifer Pilger, Joy Ramiro, Amy Roberts, Kelly Sadler, Amanda Terry, Margaret Wootten, Ping Xu, Kenneth Young

Past Staff Members: Monica Bassi, Doug Freeman, Moriah Granger, Michelle Kieffer, Lavanya Nallamshetty, Audrey Shor

Previous Coordinating Center (George Washington University) (who were involved with study at time of initiation): John M. Lachin, Mary Foulkes, Pamela Harding, Heidi Krause-Steinrauf, Susan McDonough, Paula F. McGee, Kimberly Owens Hess, Donna Phoebus, Scott Quinlan, Erica Raiden

NIDDK Staff: Judith Fradkin, Ellen Leschek, Peter Savage, Lisa Spain

Data Safety and Monitoring Board: Emily Blumberg (University of Pennsylvania), Chair; Jonathan Braun (University of California Los Angeles), Lori Laffel (Joslin Diabetes Center), Ali Naji (University of Pennsylvania), Jorn Nerup (University of Copenhagen), Trevor Orchard (University of Pittsburgh), Anastasios Tsiatis (North Carolina State University), Robert Veatch (Georgetown University), Dennis Wallace (Research Triangle Institute).
Past Members: Ake Lernmark (Lund University), Bernard Lo (University of California San Francisco), Herman Mitchell (Rho Inc.), Michael Steffes (University of Minnesota), Bernard Zinman (University of Toronto).

Infectious Disease Safety Committee: Brett Loechelt (Children's National Medical Center) (Medical Monitor), Lindsey Baden (Harvard University), Michael Green (University of Pittsburgh), Adriana Weinberg (University of Colorado)

Laboratory Directors: George S. Eisenbarth, Santica Marcovina (University of Washington), Jerry P. Palmer, Adriana Weinberg, William Winter, Liping Yu (University of Colorado Barbara Davis Center for Childhood Diabetes), Sunanda Babu (University of Colorado Barbara Davis Center for Childhood Diabetes)

Protocol Advisory Committee: Tihamer Orban (Chair), Peter Gottlieb, Carla Greenbaum, Heidi Krause-Steinrauf, John M. Lachin, Ellen Leschek, Brett Loechelt, Robertson Parkman, Lisa Rafkin, Alison Rigby, Jay S. Skyler, Lisa Spain, John Wagner.

North American Clinical Center Staff involved in this Protocol:

Benaroya Research Institute, Seattle, Washington: Carla Greenbaum, Jennifer Bollyky, Srinath Sanda, David Tridgell, Marli McCulloch-Olson, Heather Vendettuoli, Deborah Hefty, Mary Ramey, Christine Webber, Kristen Kuhns, Nicole Hilderman, Angela Dove, Marissa Hammond, Jani Klein, Emily Batts

Childrens Hospital Los Angeles: Roshanak Monzavi, Mary Halvorson, Meredith Bock, Lynda Fisher, Debra Jeandron, Jamie Wood, Francine R. Kaufman

Columbia University, New York: Robin Goland, Ellen Greenberg, Mary Pat Gallagher, Jeniece Trast, Mary Chan
Indiana University, Indianapolis: Henry Rodriguez, Mark Pescovitz, Linda DiMeglio, Lyla Christner, Maria Nicholson, Martha Mendez

Joslin Diabetes Center, Boston: Tihamer Orban, Christophe Benoist, Joseph Wolfsdorf, Alyne Ricker, Heyam Jalahej, Debbie Conboy, Klara Farkas, Janos Kis, Hui Zhang, Steve Fay

Stanford University, California: Darrell M. Wilson, Bruce A. Buckingham, Tandy Aye, Trudy Esrey, Adriana Soto, Jennifer Perry, Bonita Baker, Alison Rigby, Barbara Berry

University of California San Francisco: Stephen E. Gitelman, Stephen M. Rosenthal, Mark Anderson, Saleh Adi, Kathleen Breen, Celia Hamilton

University of Colorado Barbara Davis Center for Childhood Diabetes, Aurora, Colorado: Peter Gottlieb, H. Peter Chase, Aaron Michels, Whitney Kastelic, Laurie Weiner

University of Florida, Gainesville, FL: Desmond Schatz, Michael Haller, Michael Clare-Salzler, Roberta Cook, Diane Mancini, Annie Abraham, Elena Hicks, Gloria Cole

University of Miami Diabetes Research Institute, Miami, Florida: Jennifer B. Marks, Alberto Pugliese, Della Matheson, Carlos Blaschke, Luz Arazo, Mario Cisneros, Brenda Acosta

University of Minnesota, Minneapolis: Antoinette Moran, Brandon Nathan, John Wagner, Mary Ann Boes, Carrie Gibson, Lois Finney, Theresa Albright-Fischer, Jennifer Smith

University of Pittsburgh, Pennsylvania: Dorothy Becker, Frederico Toledo, Ingrid Libman, Karen Riley, Kelli Delallo, Kym Smith, Diane Gwynn, Gyna Wohlers
University of Texas Southwestern Medical School: Philip Raskin, Perrin White, Bryan Dickson, Soumya Adhikari, Mark Siegelman, Marilyn Alford, Nenita Torres, Tauri Harden, Lourdes Pruneda, Erica Cordova, Renee Davis, Stefani Fernandez, Jamie Arthur

University of Toronto: Diane Wherrett, Lesley A. Eisel, Brenda Ahenkorah, Natasha Razack, Mithula Sriskandarajah

Vanderbilt University: William E. Russell, James W. Thomas, Daniel J. Moore, Anne Brown, Margo Black, Eric Pittel, Faith Brendle

International Clinical Center Staff involved in this Protocol:

San Raffaele Hospital (Italy): Emanuele Bosi, Manuela Battaglia, Cristina Belloni, Eleonora Bianconi, Luca Falqui, Pauline Grogan, Carlo Lombardoni, Sabina Martinenghi Pauline Grogan

University of Bristol (United Kingdom): Penelope Bingley, Rachel Aitken, Harriet Castleden, Nicola Farthing, Claire Matthews, Jenny McGee, Carole Wheaton

Walter and Eliza Hall Institute of Medical Research (Australia): Leonard C. Harrison, Elena Andaloro, Candice Breen, Peter Colman, Spiros Fourlanos, Shane Gellert, Felicity Healy, John Wentworth

Hospital District of Southwest Finland (Finland): Oilli G. Simell, Sanna Jokipuu, Tiina Kallio, Elina Mantymaki, Kirsti Nanto-Salonen, Tiina Niininen, Birgitta Nurmi, Minna Romo, Eeva Ruohonen, Maria Sarma, Tuula Simell, Sointu Suomenrinne, Maija Torma
Diabetes Prevention Trial - Type 1 (DPT-1) Study Group:

The DPT-1 Steering Committee included: Jay S. Skyler, M.D. (University of Miami) (Chair), David Brown, M.D. (University of Minnesota), H. Peter Chase, M.D. (Barbara Davis Center for Childhood Diabetes, University of Colorado), Elaine Collier, M.D. (NIAID), Catherine Cowie, Ph.D. (NIDDK), George S. Eisenbarth, M.D. (Barbara Davis Center for Childhood Diabetes, University of Colorado), Judith Fradkin, M.D. (NIDDK), Gilman Grave, M.D. (NICHD), Carla Greenbaum, M.D. (Benaroya Research Institute, Seattle), Richard A. Jackson, M.D. (Joslin Diabetes Center), Francine R. Kaufman, M.D. (Children’s Hospital Los Angeles), Jeffrey P. Krischer, Ph.D. (University of South Florida), Jennifer B. Marks, M.D. (University of Miami), Jerry P. Palmer, M.D. (University of Washington), Alyne Ricker, M.D. (Children’s Hospital, Boston), Desmond A. Schatz, M.D. (University of Florida), Darrell Wilson, M.D. (Stanford University), William E. Winter, M.D. (University of Florida), Joseph Wolfsdorf, M.D. (Children’s Hospital, Boston), Adina Zeidler, M.D. (University of Southern California). Previous members were: Howard Dickler, M.D., Richard C. Eastman, M.D., Noel K. Maclaren, M.D., John I. Malone, M.D., and R. Paul Robertson, M.D.

This manuscript was prepared by a Writing And Review Committee consisting of Jay S. Skyler, M.D., Jeffrey P. Krischer, Ph.D., Joseph Wolfsdorf, M.D., Catherine Cowie, Ph.D., Jerry P. Palmer, M.D., Carla Greenbaum, M.D., David Cuthbertson (University of South Florida), Lisa E. Rafkin-Mervis, M.S. (University of Miami), H. Peter Chase, M.D., and Ellen Leschek, M.D. (NIDDK).

The DPT-1 Planning Committee included: Jerry P. Palmer, M.D. (Chair), H. Peter Chase, M.D., Catherine Cowie, Ph.D., Judith Fradkin, M.D., George S. Eisenbarth, M.D., Ph.D., Carla Greenbaum, M.D., Kevan Herold, M.D. (Columbia University), Francine R. Kaufman, M.D., Jeffrey P. Krischer, Ph.D., Jennifer B. Marks, M.D., Lisa E. Rafkin-Mervis, M.S., Desmond A. Schatz, M.D., Jay S. Skyler, M.D.

DPT-1 Trial Coordinators included: Beenu Aneju, R.N. (Stanford University), Debbie Conboy, R.N. (Joslin Diabetes Center), Roberta Cook, R.N. (University of Florida), Mary Alice Dennis, R.N. (University of Florida), Lois Finney, R.D. (University of Minnesota), Sherrie Harris, R.N. (Barbara Davis Center for Childhood Diabetes, University of Colorado), Della Matheson, R.N. (University of Miami), Marli McCulloch-Olsen (Benaroya Research Institute, Seattle), Terry Smith, R.N. (Joslin Diabetes Center), Julie Valenzuela, R.N. (Children’s Hospital Los Angeles), Noemi Vega, R.N. (University of Southern California).
The **DPT-1 Data Safety and Quality Monitoring Committee** included: Oscar B. Crofford, M.D. (Melbourne, Arkansas), David DeMets, Ph.D. (University of Wisconsin), John M. Lachin, Ph.D. (George Washington University), Jørn Nerup, M.D. (University of Copenhagen), Aldo Rossini, M.D. (University of Massachusetts), Alicia Schiffrin, M.D. (McGill University), Michael Steffes, M.D. (University of Minnesota), Anastasios Tsiatis, Ph.D. (North Carolina State University), Bernard Zinman, M.D. (University of Toronto).

Satellites: Aberdeen, SD: C. Wischmeier; Akron, OH: M. F. Moosa, R. Levy; Albany, NY: J. Desemone; Albany, OR: L. Benton; Alexandria, VA: H. M. Lando; Alton, IL: J. Hoelscher;