Vascular Endothelial Growth Factor-A and Islet Vascularization are Necessary in Developing, but not Adult, Pancreatic Islets

Short title: VEGF-A in Developing and Adult Islets

Rachel B. Reinert1*, Marcela Brissova2*, Alena Shostak2, Fong Cheng Pan3, Greg Poffenberger2, Qing Cai1, Gregory L. Hundemer2, Jeannelle Kantz1, Courtney S. Thompson2, Chunhua Dai2, Owen P. McGuinness1 and Alvin C. Powers1,2,4

*R.B.R and M.B. contributed equally to this article.

1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, 2Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 3Department of Cell and Developmental Biology and Vanderbilt University Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 4Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN

Correspondence:
Alvin C. Powers
Division of Diabetes, Endocrinology, and Metabolism
7465 MRB IV
2215 Garland Avenue
Vanderbilt University
Nashville, TN 37232-0202
Tel (615) 936-7678
Fax (615) 936-0063
Email al.powers@vanderbilt.edu
ABSTRACT

Pancreatic islets are highly vascularized mini-organs and vascular endothelial growth factor-A (VEGF-A) is a critical factor in the development of islet vascularization. To investigate the role of VEGF-A and endothelial cells (ECs) in adult islets, we used complementary genetic approaches to temporally inactivate VEGF-A in developing mouse pancreatic and islet progenitor cells or in adult β-cells. Inactivation of VEGF-A early in development dramatically reduced pancreatic and islet vascularization, leading to reduced β-cell proliferation in both developing and adult islets and, ultimately, reduced β-cell mass and impaired glucose clearance.

When VEGF-A was inactivated in adult β-cells, islet vascularization was reduced two-fold. Surprisingly, even after three months of reduced islet vascularization, islet architecture and β-cell gene expression, mass, and function were preserved with only a minimal abnormality in glucose clearance. These data show that normal pancreatic VEGF-A expression is critical for the recruitment of ECs and the subsequent stimulation of endocrine cell proliferation during islet development. In contrast, although VEGF-A is required for maintaining the specialized vasculature observed in normal adult islets, adult β-cells can adapt and survive long-term reductions in islet vascularity. These results indicate that VEGF-A and islet vascularization have a lesser role in adult islet function and β-cell mass.
INTRODUCTION

The pancreatic islets are endocrine mini-organs with a specialized vasculature. Islets are highly vascularized, with a dense network of capillaries that are thicker and more tortuous than vessels of the exocrine tissue (1). While islets occupy only a small volume of the pancreas, they receive a disproportionally greater fraction of pancreatic blood flow (2,3). Ultrastructurally, islets have a fenestrated endothelium, which allows for the rapid exchange of nutrients and hormones between endocrine cells and the bloodstream (1,4,5). This highly vascularized state leads to a greater partial oxygen pressure in islets than in exocrine tissue (6). The polyhedral β-cells appear to have multiple faces contacting blood vessels, and hypoxia impairs glucose-stimulated insulin secretion (7,8). Furthermore, the islet vasculature and the ECs near or in the developing pancreas and islet provide critically important instructive signals necessary for islet formation and β-cell differentiation (9,10).

Much work to understand the mechanisms directing normal islet vascularization has focused on the role of islet-derived angiogenic factors. Islet endocrine cells produce multiple factors from the VEGF, angiopoietin, and ephrin families, with VEGF-A being the predominant regulator of islet angiogenesis and vascularization. When VEGF-A is inactivated either in the early pancreas (5) or in newly formed β-cells (1), the intraislet capillary plexus fails to fully mature, resulting in substantial defects in insulin secretion and glucose intolerance. In contrast, overexpression of VEGF-A in developing pancreata (11) or β-cells (12) is detrimental to endocrine cell differentiation and islet formation. Therefore, VEGF-A expression must be precisely controlled in the developing pancreas for proper islet development and long-term glucose homeostasis.
While existing genetic mouse models demonstrated a role for VEGF-A and ECs in islet formation, the precise role of VEGF-A in adult islets is unclear. Prior studies inactivated VEGF-A during embryogenesis, thus making it difficult to identify which phenotypes resulted from developmental defects and which reflected the role of VEGF-A and ECs in adult islets. In an alternate approach, VEGF signaling inhibitors administered to adult mice demonstrated the importance of VEGF-A in maintaining the islet vascular density and permeability (13). However, the effects of VEGF inhibitors on the vasculature of multiple tissues prevented a full understanding of the role of ECs in established islets.

To investigate the role of VEGF-A and ECs in adult islet function, we used complementary genetic approaches to temporally inactivate VEGF-A in developing pancreatic and islet progenitors or in adult β-cells using a tamoxifen (Tm)-inducible Cre-loxP system. We found that adult pancreatic β-cells tolerated a significant and prolonged reduction in intra-islet capillary density and still maintained relatively normal function. By comparison, inactivation of VEGF-A in early pancreas development resulted in hypovascularized islets with a sustained reduction in β-cell proliferation and mass. These data indicate that VEGF-A plays distinctive roles in developing and adult pancreatic islets.
RESEARCH DESIGN AND METHODS

Mice

Mouse models were generated by breeding male hemizygous transgenic Pdx1-Cre mice (Mouse Genome Informatics [MGI] nomenclature: \(Tg(Pdx1\text{-}cre)^{89.1Dam} \)) (14) or Pdx1\(^{PB}\)-CreER mice (MGI nomenclature: \(Tg(Pdx1\text{-}cre/ERT)^{1Mga} \)) (15) with female mice expressing a conditional VEGF-A allele (\(Vegfa^{fl/fl} \); MGI nomenclature: \(Vegfa^{tm2Gne} \)) (16). In all experiments, Cre-positive mice were compared with their respective age-matched \(Vegfa^{fl/fl} \) littermates. PCR genotyping was performed on tail biopsies with primers described (14,16,17). Before all terminal procedures, mice were anesthetized with a solution of 90 mg/kg ketamine and 10 mg/kg xylazine (Henry Schein, Melville, NY). Animal studies were approved by the Institutional Animal Care and Use Committee at Vanderbilt University Medical Center. Tamoxifen (Tm; Sigma T5648) administration was performed as described (18). Tm-treated mice were housed separately to prevent cross-contamination (19).

Islet isolation, VEGF-A ELISA, and quantitative RT-PCR

Islets were isolated by collagenase P digestion of the pancreas (20) and handpicked under microscopic guidance to nearly 100% purity. Quantification of islet VEGF-A production was performed by ELISA (R&D Systems, Minneapolis, MN) (1). Quantitative RT-PCR analysis on total cellular RNA from isolated islets was performed using \(Rn18s \) as housekeeping gene and the primer-probe sets (Applied Biosystems, Foster City, CA, USA) listed in Supplementary Table 1 (21,22).
Tissue collection, immunohistochemistry, and imaging

Embryonic, neonatal and adult pancreata were processed and imaged as described previously (12,20). Cryosections and whole mounts were labeled by immunohistochemistry as described previously (20) using antibodies and working dilutions listed in Supplementary Table 2. Transmission electron microscopy (TEM) was performed on pancreata from Vegfa^{−/−} and Pdx1^{Pb-CreER;Vegfa^{−/−}} mice one month after Tm treatment, as described (1).

Glucose tolerance testing, islet function, and pancreatic hormone content

Intraperitoneal glucose tolerance testing (2 g/kg of body weight) was performed after a 14-16 hour fast as previously described (1). Islet function was studied in a dynamic cell perfusion system (1,23). Insulin concentration in perifusate fractions and insulin content in pancreatic extracts were determined by radioimmunoassay (RI-13K; Millipore) (24). Hyperglycemic clamps were performed in conscious chronically catheterized (carotid artery and jugular vein) mice by the Vanderbilt Mouse Metabolic and Phenotyping Center, according to established protocols (25).

Morphometric analysis

In adult pancreatic sections, analyses of vessel density and size were performed with MetaMorph software (Universal Imaging, Downington, PA) as previously described (1). In whole mount embryonic pancreata, the ratio of PECAM-1+ vessel area to area of Pdx1+ pancreatic epithelium was calculated on every third optical section of z-stacks obtained by confocal microscopy, and averaged for each pancreas.
Pancreatic β-cell area measurements were based on whole section imaging with either a tiling (Olympus BX41) or scanning approach (ScanScope FL, Aperio Technologies, Inc., Vista, CA). For β-cell area, four pancreatic sections (at least 200 µm apart) were immunolabeled for insulin/amylase or alternatively islet hormones. Sections were counterstained with the nuclear label DAPI. Analysis of β-cell area was performed using MetaMorph and ImageScope software (Aperio). β-cell proliferation was assessed by either pH3 or BrdU labeling (2000-3000 β-cells analyzed/tissue). BrdU (Sigma, St. Louis, MO) was administered at 0.8 mg/mL in drinking water for 7 days prior to tissue collection. For these analyses, n ≥ 3 mice were used per group.

Statistical Analysis

Statistical analyses were performed with Prism software (GraphPad Software, La Jolla, CA). Comparisons between two groups were assessed by Student’s t-test. Data is reported as means ± standard error of the mean (SEM). Statistical significance was assigned when $P < 0.05$.

Reinert et al. - 7
RESULTS

Genetic models of VEGF-A inactivation in developing pancreas and adult islets

To investigate the role of VEGF-A and ECs in adult islet function, we used complementary genetic Cre-loxP approaches to temporally inactivate VEGF-A during pancreas and islet development (Pdx1-Cre) (14) or in adult islets (Pdx1^{PB}-CreER) (15) (Fig. 1A). For studies of VEGF-A inactivation in adult islets, we determined a Tm dose effectively reducing VEGF-A expression with minimal toxicity (3 x 1 mg Tm), which resulted in a 91.4% reduction in islet VEGF-A secretion in vitro (Supplementary Fig. 1) (18).

Compared to pancreatic acinar tissue, islet endocrine cells from adult vehicle-treated and Tm-treated Vegfa^{fl/fl} mice and from vehicle-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice expressed high levels of VEGF-A (Fig. 1 and data not shown). In contrast, reduced VEGF-A immunoreactivity was observed throughout the pancreas of Pdx1-Cre;Vegfa^{fl/fl} mice (Fig. 1C). Reduced VEGF-A immunoreactivity was also observed in β-cells from adult Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice both one and three months after Tm treatment, though VEGF-A was still expressed by α-cells (Fig. 1D and data not shown). Isolated islets from adult Pdx1-Cre;Vegfa^{fl/fl} mice and Tm-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice showed a significant reduction in Vegfa and Kdr (VEGF-A receptor 2) mRNA compared to their respective Vegfa^{fl/fl} controls (Fig. 1E,F). There were no compensatory changes in other VEGF family members (Fig. 1E-F and data not shown).

VEGF-A inactivation in developing pancreas and adult islets reduces islet vascularity

To investigate effects of VEGF-A inactivation in the developing pancreas and adult islets, we assessed the pancreatic and islet vasculature by immunohistochemistry and morphometry (Fig. 2A-C). Morphometric analysis of islets from adult Pdx1-Cre;Vegfa^{fl/fl} mice showed a 72%
reduction in islet vessel density (Fig. 2D). The islet vessel density was reduced 53% in Tm-treated $Pdx1^{PB-CreER};Vegfa^{0/0}$ mice (Fig. 2F and data not shown). Similarly, the islet vessel size/branching was reduced 73% in adult $Pdx1-Cre;Vegfa^{0/0}$ mice and 45% in Tm-treated $Pdx1^{PB-CreER};Vegfa^{0/0}$ mice (Fig. 2E,G). Similar vascular changes in $Pdx1^{PB-CreER};Vegfa^{0/0}$ islet were also observed one month following Tm treatment (data not shown). Exocrine vessel density and size were also reduced $Pdx1-Cre;Vegfa^{0/0}$ mice (Fig. 2H,I). In contrast, exocrine vessel density was unchanged in $Pdx1^{PB-CreER};Vegfa^{0/0}$ mice, though exocrine vessel size was slightly reduced (Fig. 2J,K).

We next examined how reduced VEGF-A expression affected capillary permeability in adult $Pdx1^{PB-CreER};Vegfa^{0/0}$ islets by TEM. As described previously (1,5), ECs lining capillaries in Tm-treated $Vegfa^{0/0}$ controls contained highly fenestrated endothelium (Fig. 2L). The islet capillaries in Tm-treated $Pdx1^{PB-CreER};Vegfa^{0/0}$ mice displayed a wide range in the degree of fenestrated endothelium. Fenestrations were clearly less prevalent (open arrowheads in Fig. 2M, Supplementary Fig. 2A-D), although they still could be readily found in some capillaries of VEGF-A-deficient islets. In contrast to VEGF-A inactivation during development (1,5), the abundance of caveolae in intra-islet capillaries of Tm-treated $Pdx1^{PB-CreER};Vegfa^{0/0}$ mice was more variable between individual capillaries (Supplementary Fig. 2A-D).

Timing of VEGF-A inactivation has differential effects on pancreatic and β-cell mass

Early pancreas-wide inactivation of VEGF-A not only led to severely reduced islet vascularization but also resulted in a 43% reduction in overall pancreatic tissue mass (Fig. 3A). This change in pancreatic mass was accompanied by a 42% reduction in pancreatic insulin content (Fig. 3C) and a 36% reduction in the islet area (even when normalized to the pancreatic
area; Fig. 3E). In contrast, pancreas size, pancreatic insulin content, and \(\beta \)-cell area per pancreas were unchanged in Tm-treated adult \(Pdx1^{PB-}\text{CreER};Vegfa^{fl/fl} \) mice (Fig. 3B,D,F). Although the timing of VEGF-A inactivation in \(Pdx1^{Cre};Vegfa^{fl/fl} \) and Tm-treated \(Pdx1^{PB-}\text{CreER};Vegfa^{fl/fl} \) mice differentially affected \(\beta \)-cell mass, islet morphology was indistinguishable between the two mutants and their respective controls (Fig. 3G-I).

The VEGF-A-dependent maintenance of islet vasculature is required for normal glucose homeostasis, but not for insulin secretion alone

We showed previously that islet vasculature is important for insulin delivery into the peripheral circulation (1). To examine the impact of reduced adult islet vasculature on islet function and glucose homeostasis, mice from each line were challenged with a bolus of glucose. Six-month-old male \(Pdx1^{Cre};Vegfa^{fl/fl} \) mice, which have greatly reduced islet vascular supply and \(\beta \)-cell mass, showed severe glucose intolerance (Fig. 4A). In contrast, Tm-treated \(Pdx1^{PB-}\text{CreER};Vegfa^{fl/fl} \) males had only mildly impaired glucose tolerance both one month and three months after VEGF-A inactivation (at ages 5 and 7 months; Fig. 4B-D). In female mice, this phenotype only manifested three months following VEGF-A inactivation, and was much less pronounced (Supplemental Fig. 3).

To further investigate the milder changes in glucose tolerance in \(Pdx1^{PB-}\text{CreER};Vegfa^{fl/fl} \) mice, an *in vivo* analysis of insulin secretion by a hyperglycemic clamp experiment was performed. It demonstrated that insulin release into systemic circulation was slightly delayed in mice with hypovascularized \(Pdx1^{PB-}\text{CreER};Vegfa^{fl/fl} \) islets compared to \(Vegfa^{fl/fl} \) controls (Supplementary Fig. 4). These data were consistent with the greater peak glucose and
subsequently delayed glucose clearance during the glucose tolerance test of \(Pdx1^{PB-} \) CreER;\(Vegfa^{0/0} \) mice (Fig. 4B-D).

Next, we sought to determine if changes in islet vascularization had direct effects on \(\beta \)-cells. Reduced oxygenation, as a consequence of reduced islet vascularization, could lead to increased expression of Hif1\(\alpha \) and altered glucose sensing in \(\beta \)-cells (26,27). In \(Pdx1^{-} \) Cre;\(Vegfa^{0/0} \) islets with 72\% capillary loss, Hif1\(\alpha \) showed only a modest \(\beta \)-cell nuclear enrichment and islets maintained normal Gck and Glut2 expression (Supplementary Fig. 5), but Hif1\(\alpha \) was undetectable in \(\beta \)-cells of Tm-induced \(Pdx1^{PB-} \) CreER;\(Vegfa^{0/0} \) islets (which maintained 50\% of their vascular supply), suggesting that islets have a relatively high capacity to adapt to reduced vascularization.

Islets from both \(Pdx1^{-} \) Cre;\(Vegfa^{0/0} \) and Tm-treated \(Pdx1^{PB-} \) CreER;\(Vegfa^{0/0} \) mice had normal Ins2 and Mafa gene expression, though \(Pdx1 \) mRNA levels in \(Pdx1^{-} \) Cre;\(Vegfa^{0/0} \) islets were slightly reduced (Fig. 5A,B). Additionally, \(\beta \)-cells in both models of VEGF-A inactivation displayed normal nuclear expression of two principal regulators of insulin gene transcription, PDX1 and MAFA (data not shown). \(\beta \)-cells of Tm-treated \(Pdx1^{PB-} \) CreER;\(Vegfa^{0/0} \) mice had normal morphology by TEM with densely packed insulin secretory granules displaying their characteristic halos (Fig. 5C,D). Furthermore, a functional analysis of islets isolated from Tm-treated \(Pdx1^{PB-} \) CreER;\(Vegfa^{0/0} \) mice by an in vitro perifusion assay showed that reducing islet vasculature in adult islets does not affect \(\beta \)-cell insulin secretion (Fig. 5E).

Taken together, these data suggest that the insulin secretory defect in islets from both \(Pdx1^{-} \) Cre;\(Vegfa^{0/0} \) and Tm-treated \(Pdx1^{PB-} \) CreER;\(Vegfa^{0/0} \) mice is mediated by impaired vascular delivery of insulin into the peripheral circulation. The defect in glucose clearance in \(Pdx1^{-} \) Cre;\(Vegfa^{0/0} \) mice was most likely exacerbated due to the combined reduction in both islet
vasculature and β-cell mass. A caveat of these studies is that Cre recombinase activity has been detected in the brain (and specifically within the hypothalamus) in both our Cre driver lines (28).

How does VEGF-A inactivation in developing pancreas lead to reduced β-cell mass?

Prior studies using the Rip-Cre;Vegfa^{fl/fl} model to inactivate VEGF-A in developing islets showed that in the setting where islet vasculature is reduced by 50%, mice maintained normal pancreatic insulin content and β-cell mass (1). In contrast, the current studies with Pdx1-Cre;Vegfa^{fl/fl} mice demonstrate that the earlier and more extensive loss of VEGF-A and islet vasculature (72%) reduces pancreatic insulin content and β-cell mass, but not Ins2 gene transcription. To address if the reduction in β-cells was caused by reduced endocrine cell genesis, we first analyzed Pdx1-Cre;Vegfa^{fl/fl} pancreata at the onset of secondary transition (Fig. 6A-G). VEGF-A inactivation with Pdx1-Cre line resulted in a substantially reduced pancreatic vascularization at e14.5 (Fig. 6A-C). Although the density of PECAM-1+ vascular structures was significantly decreased in Pdx1-Cre;Vegfa^{fl/fl} pancreata compared to their controls, there was no difference in the organization of CPA1+ tip cells and SOX9+ trunk progenitors suggesting no defect in tip-trunk compartmentalization. Furthermore, the density of NGN3+ endocrine progenitors (Fig. 6F,G), and PAX6+ endocrine precursors (data not shown) per E-cadherin+ pancreatic epithelium was similar in Pdx1-Cre;Vegfa^{fl/fl} and Vegfa^{fl/fl} pancreata, suggesting that the process of endocrine cell specification is not perturbed by pancreatic hypovascularization.

At postnatal day 1 (P1), Pdx1-Cre;Vegfa^{fl/fl} islets were severely depleted of ECs (Fig. 6H,I) but had a normal mantle-core arrangement of endocrine cells (Fig. 6J,K). However, severe islet hypovascularization was associated with a 31% reduction in pancreatic insulin content (Fig. 6P) and a 50% reduction in β-cell proliferation (Fig. 5L,M,Q). β-cells in Pdx1-Cre;Vegfa^{fl/fl} islets
continued to proliferate at lower rate throughout postnatal life, as measured by BrdU labeling in 2-month-old mice (Fig. 6N,O,R). By contrast, β-cell proliferation was unchanged in seven-month-old Tm-treated Pdx1\(^{PB}\)-CreER;Vegfa\(^{0/0}\) mice and Vegfa\(^{0/0}\) controls (Supplementary Fig. 6). Collectively, these data indicate that pancreatic vasculature modulated by VEGF-A signaling is necessary for growth of both the exocrine and endocrine pancreas, and that the extent and timing of VEGF-A inactivation differentially impacts β-cell mass.
DISCUSSION

VEGF-A is critical for EC recruitment during islet development and is responsible for the highly vascularized state of pancreatic islets. Using complementary genetic models to temporally control VEGF-A inactivation, we show: 1) loss of VEGF-A expression during early pancreas development impairs pancreatic and islet vascularization and leads to a sustained reduction in β-cell proliferation, resulting in reduced pancreatic and β-cell mass and impaired glucose clearance; 2) loss of VEGF-A expression in adult β-cells reduces islet vascularization and the number of intra-islet ECs; and 3) despite a 50% reduction in adult islet vasculature, adult islets are surprisingly capable of maintaining islet morphology, gene expression, and β-cell mass with only minimal impairment in glucose homeostasis. These results indicate that VEGF-A and the islet vasculature it regulates have a different role during pancreatic and islet development than in the adult islet (Fig. 7) and that the adult islet and β-cell have considerable capacity to survive and function when blood flow, oxygenation, and intra-islet ECs are markedly reduced.

VEGF-A signaling during development is crucial for pancreas and islet growth and for islet vascularization

The close relationship between islet cells and the vasculature begins in early pancreatic development, when ECs are required for the initiation of pancreas bud formation and insulin gene induction (9,10). Pancreatic vascularization is also important in differentiation and development of the exocrine pancreas (29). The assembly of the islet vasculature and the aggregation of developing islet cell clusters into an islet occur concomitantly in the later stages of development (E16-P1 in the mouse) (1). The data presented here provide new insights into these coordinated and integrated processes by showing that VEGF-A inactivation using a Pdx1-
Cre leads to reduced β-cell mass at birth and that the β-cell mass is never recovered. These results are quite different from when VEGF-A is inactivated slightly later in development with an Ins-Cre where β-cell mass is not affected, but delivery of insulin into the systemic circulation is impaired by the reduced islet vascularization (1). The reduced β-cell mass in Pdx1-Cre;Vegfafl/fl mice is not caused by reduced islet endocrine cell genesis, but instead by a reduction in β-cell proliferation. This reduced β-cell proliferation was noted at P1 and continued in adult islets. Since this reduction in β-cell proliferation was not seen when the tamoxifen-based system was used to inactivate VEGF-A in adult β-cells, we conclude: 1) β-cells present in the developmental window between VEGF-A inactivation with the Pdx1-Cre and Ins-Cre either respond differently to EC signals promoting proliferation or ECs during this brief developmental window produce different signals than those in later development and in the adult; 2) if β-cells do not receive this proliferative stimulus from ECs during this developmental window, their subsequent ability to proliferate is compromised; 3) more extensive loss in islet vasculature with Pdx1-Cre vs. Ins-Cre leads to reduced β-cell proliferation. In addition, the early inactivation of VEGF-A with the Pdx1-Cre could affect developing islets by reducing the number of growth factor-producing endothelial cells adjacent to developing islets and limiting delivery of nutrients through a reduced blood supply. Some of the current results with the Pdx1-Cre;Vegfafl/fl mice differ from a previous report (5), in which the pancreatic islet area was not reduced, but glucose tolerance was impaired. In the current report, more detailed analyses demonstrated that both pancreatic and β-cell mass were reduced, with β-cell mass being assessed by independent measurements of insulin content, β-cell area, and β-cell mass.
Neither VEGF-A signaling nor islet vascularization is required for maintenance of \(\beta \)-cell mass and function

Because inactivation of VEGF-A during pancreas and islet development had such a major effect on islet \(\beta \)-cell mass and because islet oxygenation and blood flow are thought to be critical for insulin secretion, we predicted that inactivation of VEGF-A in adult \(\beta \)-cells would lead to reduced \(\beta \)-cell mass and markedly impaired insulin secretion. Although we were able to induce a substantial and prolonged reduction in islet VEGF-A production, the \(\beta \)-cell mass and function were remarkably similar to controls and the mice had only slight changes in glucose metabolism \textit{in vivo}. In addition, islets from Tm-treated \(Pdx1^{PB-CreER;Vegfa^{0/0}} \) mice had no change in expression of the \(\beta \)-cell genes \(Ins2, Pdx1, \) or \(Mafa \), and no difference in pancreatic insulin content or \(\beta \)-cell area. We did not observe a reduction in pancreatic \(\beta \)-cell area or proliferation even three months following VEGF-A inactivation, suggesting that a 50% reduction of islet vasculature does not impair basal \(\beta \)-cell survival.

The main defect observed in \(Pdx1^{PB-CreER;Vegfa^{0/0}} \) mice was slightly impaired glucose tolerance following VEGF-A inactivation. This suggests that there is either a delay in the glucose stimulus reaching the \(\beta \)-cells, or a delay in insulin release into the bloodstream. Because \(\beta \)-cells can secrete insulin into the interstitium and directly into capillaries (30), it is likely that the insulin produced in Tm-treated \(Pdx1^{PB-CreER;Vegfa^{0/0}} \) mice has a longer path to traverse before finding the bloodstream. Indeed, perifusion of islets from Tm-treated \(Pdx1^{PB-CreER;Vegfa^{0/0}} \) mice showed no alterations in glucose-stimulated insulin secretion \textit{in vitro}, while the hyperglycemic clamp data demonstrated a slight delay in glucose-stimulated insulin secretion \textit{in vivo}. Importantly, \(Pdx^{PB-CreERTm;Vegfa^{0/0}} \) mice were able to attain the insulin secretion seen in the control mice at the end of the clamp, consistent with the minimal difference in blood glucose.
levels at the end of the glucose tolerance test. Previous studies showed that adult Rip-Cre;Vegfa^{fl/fl} mice had more severe glucose intolerance and reduced insulin secretion, even though they display a similar reduction in intraislet vessel density as Tm-treated Pdx1^{PB-CreER;Vegfa^{fl/fl}} mice, and normal β-cell mass (1). However, Rip-Cre;Vegfa^{fl/fl} mice also show dramatic changes in intra-islet capillary ultrastructure, displaying few fenestrations and increased caveolae (1), similar to intraislet capillaries in mice treated with VEGF signaling inhibitors (13) and those reported by Lammert and colleagues (5). In contrast, Pdx1^{PB-CreER;Vegfa^{fl/fl}} mice display a mix in capillary ultrastructure, with the preservation of many fenestrations. It is possible that non-β endocrine cells and β-cells in which VEGF-A was not inactivated are able to partially compensate for the lack of VEGF-A production by β-cells in Pdx1^{PB-CreER;Vegfa^{fl/fl}} mice, and that this lesser reduction in capillary permeability may account for the very mild glucose intolerance seen in this model. Our metabolic data contrasts with data from mice treated with a VEGF receptor inhibitor, in which fasting blood glucose and glucose tolerance was improved (13). Although the inhibitor led to a similar reduction in pancreatic islet vascular density as in our model, it also likely affected the vasculature of multiple other tissues.

Implications for islet adaptation, type 2 diabetes, and islet transplantation

These findings have implications for islet-related physiology and pathophysiology. For example, in insulin-resistant states such as obesity, pregnancy, and puberty, the β-cell must respond by increasing insulin biosynthesis and output and one would predict that both the delivery of nutrients and oxygen and the efflux of insulin from the islet require adaptations in blood flow. The current results indicate that there is likely sufficient redundancy in islet blood flow so that islet vascularization would not limit the β-cell’s response to such challenges. We have noted that
islet blood flow increases in hyperplastic islets but this is the result of intra-islet vessel dilatation and not an increase in the number of intra-islet vessels (31). In these expanded islets with dilated vasculature, β-cells are a greater distance from a capillary and thus may have a similar islet/capillary relationship as seen in islets with VEGF-A inactivated in adult mice.

Decreased vessel density and oxygen tension (32,33) in islet grafts may contribute to islet death or dysfunction in the early transplantation period. Since islets after transplantation are avascular, the reduction in islet blood flow would be greater than in tamoxifen-induced reduction in islet vascularization so efforts to hasten islet revascularization are still warranted. However, the current results do suggest that it may not be necessary for transplanted islets to achieve the highly vascularized state of islets within the pancreas. In fact, Olsson and colleagues reported recently that many islets in the pancreas are exposed to low oxygenation and are only recruited when necessary so perhaps β-cells do not require a high oxygen tension and can function when vascularization is reduced (34). Thus, additional investigation is required before the relationship of islet vascularization and islet function in adult islets is clearly defined.

Finally, insufficient VEGF-A signaling to ECs and reduced EC signals to developing islets cells at critical stages of development not only reduced pancreatic and β-cell mass but also reduced basal β-cell proliferation in adult islets suggesting that the embryonic effect persists. Thus, it is possible that reduced VEGF signaling during development could lead to a reduced ability to expand β-cell mass in response to challenges such as insulin resistance.
ACKNOWLEDGMENTS

We thank Guoqiang Gu and Douglas A. Melton (Harvard University) for the Pdx1-Cre mice, Maureen Gannon and Christopher V.E. Wright (Vanderbilt University) for the Pdx1PB-CreER mice, and Napoleone Ferrara for the Vegfa_{loxP} mice. We are grateful to Christopher V.E. Wright, Roland Stein, and Guoqiang Gu for providing antibodies (Vanderbilt University). This work was supported by a Merit Review Award from the VA Research Service (BX000666), by NIH grants (DK69603, DK68764, DK89572, DK66636, DK63439, DK72473, DK89538), by grants from the Juvenile Diabetes Research Foundation International, by the Vanderbilt Mouse Metabolic Phenotyping Center (NIH grant DK59637), and by the Vanderbilt Diabetes Research and Training Center (DK20593). Islet isolation was performed in collaboration with the Vanderbilt Islet Procurement and Analysis Core (supported by the Vanderbilt DRTC). Tissue sections were acquired in part by the Vanderbilt Translational Pathology Shared Resource. Imaging was performed with support from the Vanderbilt University Medical Center Cell Imaging Shared Resource (NIH grants CA68485, DK20593, DK58404, HD15052, DK59637, and EY08126). Authors do not have relevant conflict(s) of interest to disclose.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: R.B.R., M.B., J.K., C.D., O.P.M., A.C.P. Performed the experiments: R.B.R., J.K., F.C.P., G.P., G.H., Q.C., A.S., C.S.T., C.D., M.B. Analyzed the data: R.B.R., M.B., C.D., O.P.M., A.C.P. Wrote the manuscript: R.B.R., M.B., A.C.P. Reviewed/edited the manuscript: G.P., F.C.P., C.S.T., C.D., O.P.M. A.C.P. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
REFERENCES

14. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+...
cells are islet progenitors and are distinct from duct progenitors. Development. 2002 May;129(10):2447–57.

FIGURE LEGENDS

Fig. 1. The inducible Pdx1-CreER; Vegfa^{fl/fl} line is an effective tool for VEGF-A inactivation in adult pancreatic islets. (A) Timeline of VEGF-A inactivation in Pdx1-Cre; Vegfa^{fl/fl} and Pdx1^{PB}-CreER; Vegfa^{fl/fl} mice. Effects of early VEGF-A inactivation in Pdx1-Cre; Vegfa^{fl/fl} line were analyzed at e14.5, P1, 2 months and 6 months of age. To inactivate VEGF-A in adult islets, four-month-old Pdx1^{PB}-CreER; Vegfa^{fl/fl} mice and Vegfa^{fl/fl} controls were treated with three injections of tamoxifen (Tm) or corn oil vehicle (Veh) and analysis was performed 3 months after tamoxifen treatment unless stated otherwise. (B-D) Representative images of double labeling for VEGF-A (red) and glucagon (Gcg, blue) in pancreatic tissue from 6-month-old Pdx1-Cre; Vegfa^{fl/fl} and 7-month-old Tm-treated Pdx1^{PB}-CreER; Vegfa^{fl/fl} mice, and age-matched controls (n=3-4 mice/genotype). Scale bar in B is 100 µm, and applies to panels C and D. (E,F) Relative mRNA expression measured by quantitative RT-PCR of Vegfa, Vegfb, and Kdr (VEGF receptor 2) in islets from 6-month-old Pdx1-Cre; Vegfa^{fl/fl} and 7-month-old Tm-treated Pdx1^{PB}-CreER; Vegfa^{fl/fl} mice. (E) In Pdx1-Cre; Vegfa^{fl/fl}, values are 0.05 ± 0.02 for Vegfa (n = 3), 0.72 ± 0.03 for Vegfb (n = 3), and 0.1 ± 0.02 for Vegfr2 (n = 3). For all three genes, ***P < 0.001 Pdx1-Cre; Vegfa^{fl/fl} vs. Vegfa^{fl/fl} control. (F) In Pdx1^{PB}-CreER; Vegfa^{fl/fl}, values are 0.126 ± 0.0275 for Vegfa (n = 3; ***P < 0.0001 vs. Vegfa^{fl/fl} control, 1.771 ± 0.349 for Vegfb (n = 3; P > 0.05 vs. control), and 0.241 ± 0.0323 for Vegfr2 (n = 3; ***P = 0.0002 vs. control).

Fig. 2. VEGF-A is required to form and maintain the intraislet vasculature. The vasculature in 6-month-old Pdx1-Cre; Vegfa^{fl/fl} and 7-month-old Tm-treated Pdx1^{PB}-CreER; Vegfa^{fl/fl} mice and their respective controls was assessed by integrated morphometry. (A-C) Pancreatic sections labeled for insulin (Ins, green) and vascular marker PECAM-1 (red). Gray scale images of
PECAM-1 labeling are displayed in corresponding panels A’-C’. Scale bar in A is 250 µm, and applies to panels B and C. (D-G) Islet vessel density and area per islet vessel in VEGF-A-deficient islets, ***P < 0.0001. (D) Values are 1267 ± 30 vessels/mm² in Vegfa^{fl/fl} mice (n = 4) and 350 ± 27 vessels/mm² in Pdx1^{Cr}-Cre;Vegfa^{fl/fl} mice (n = 4). (E) Values are 108 ± 7 µm² in Vegfa^{fl/fl} mice (n = 4) and 30 ± 2 µm² in Pdx1^{Cr}-Cre;Vegfa^{fl/fl} mice (n = 4). (F) Values are 1868 ± 66 vessels/mm² in Tm-treated Vegfa^{fl/fl} mice (n = 4) and 870 ± 27 vessels/mm² in Tm-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice (n = 9). (G) Values are 76 ± 3 µm² in Tm-treated Vegfa^{fl/fl} mice (n = 4) and 42 ± 2 µm² in Tm-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice (n = 9). Similar vascular changes in Pdx1^{PB}-CreER;Vegfa^{fl/fl} islets were also observed one month after Tm treatment. (H-K) Exocrine vessel density and area per exocrine vessel. (H) Values are 750 ± 24 vessels/mm² in Vegfa^{fl/fl} mice and 584 ± 31 vessels/mm² in Pdx1^{Cr}-Cre;Vegfa^{fl/fl} mice (n = 4; ***P < 0.0001) (I) Values are 44 ± 2 µm² in Vegfa^{fl/fl} mice and 32 ± 2 µm² in Pdx1^{Cr}-Cre;Vegfa^{fl/fl} mice (n = 4; ***P < 0.0001). (J) Values are 758 ± 30 vessels/mm² in Tm-treated Vegfa^{fl/fl} mice and 761 ± 21 vessels/mm² in Tm-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice (n = 4; P > 0.05). (K) Values are 54 ± 3 µm² in Tm-treated Vegfa^{fl/fl} mice and 39 ± 2 µm² in Tm-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice (n = 9; ***P < 0.001). (L-M) Transmission electron micrographs of islet capillaries in 7-month-old Tm-treated Vegfa^{fl/fl} and Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice. Images were acquired at 15000x magnification. Scale bar in L is 100 nm, and applies to M. L, capillary lumen; N, endothelial cell nucleus; open arrowheads denote fenestrations and closed arrowheads denote caveolae.

Fig. 3. The timing of VEGF-A inactivation has different effects on pancreatic and β-cell mass. (A,B) Pancreatic weight is reduced in 6-month-old Pdx1^{Cr}-Cre;Vegfa^{fl/fl} (0.342 ± 0.016 g in Vegfa^{fl/fl} vs. 0.196 ± 0.012 g in Pdx1^{Cr}-Cre;Vegfa^{fl/fl} mice; n = 14-16/genotype; ***P < 0.0001) but
is unchanged in 7-month-old Tm-treated $Pdx1^{PB-CreER;Vegfa^{fl/fl}}$ mice 0.305 ± 0.011 g in $Vegfa^{fl/fl}$ vs. 0.301 ± 0.011 g in $Pdx1^{PB-CreER;Vegfa^{fl/fl}}$ mice; $n = 21-29$/genotype; $P > 0.05$). (C) Six-month-old $Pdx1-Cre;Vegfa^{fl/fl}$ mice have reduced pancreatic insulin content 22.9 ± 2.8 μg in $Vegfa^{fl/fl}$ mice vs. 13.3 ± 1.5 μg in $Pdx1-Cre;Vegfa^{fl/fl}$ mice; $n = 9-10$/genotype; $*P < 0.05$). (D) Pancreatic insulin content is unchanged in 7-month-old Tm-treated $Pdx1^{PB-CreER;Vegfa^{fl/fl}}$ mice 20.8 ± 1.3 μg in Tm-treated $Vegfa^{fl/fl}$ mice vs. 19.9 ± 1.4 μg in Tm-treated $Pdx1^{PB-CreER;Vegfa^{fl/fl}}$ mice; $n = 8-10$/genotype; $P > 0.05$). (E) Six-month-old $Pdx1-Cre;Vegfa^{fl/fl}$ mice have reduced pancreatic β-cell area $2.50\% \pm 0.31\%$ in $Vegfa^{fl/fl}$ mice vs. $1.53\% \pm 0.30\%$ in $Pdx1-Cre;Vegfa^{fl/fl}$ mice; $n = 3$/genotype; $*P < 0.05$). (F) Seven-month-old Tm-treated $Pdx1^{PB-CreER;Vegfa^{fl/fl}}$ mice have normal pancreatic β-cell area $0.89\% \pm 0.11\%$ in Tm-treated $Vegfa^{fl/fl}$ mice vs. $0.82\% \pm 0.071\%$ in Tm-treated $Pdx1^{PB-CreER;Vegfa^{fl/fl}}$ mice; $n = 3$/genotype; $P > 0.05$).

(G-I) Pancreatic islets in 6-month-old $Pdx1-Cre;Vegfa^{fl/fl}$ mice and 7-month-old Tm-treated $Pdx1^{PB-CreER;Vegfa^{fl/fl}}$ mice have normal architecture. Triple labeling for insulin (Ins, green), glucagon (Gcg, red), and somatostatin (Som, blue). Scale bar in G is 50 μm, and applies to H and I.

Fig. 4. The timing of VEGF-A inactivation differentially affects glucose tolerance. (A) Glucose tolerance testing was performed in $Vegfa^{fl/fl}$ and $Pdx1-Cre;Vegfa^{fl/fl}$ mice at 6 months of age. (B-D) Glucose tolerance testing was performed in $Vegfa^{fl/fl}$ and $Pdx1^{PB-CreER;Vegfa^{fl/fl}}$ mice before tamoxifen (Tm) treatment (at 4 months of age, B), and one month (C) and three months (D) following Tm or vehicle (Veh) treatment. In all experiments, male mice were fasted for 16 hours before intraperitoneal injection of 2 g/kg glucose. Data were analyzed by one-way ANOVA of the area under the curve.
Fig. 5. VEGF-A inactivation in adult islets has no effect on β-cell gene expression, β-cell secretory granule morphology, or insulin secretion in vitro. (A,B) Relative gene expression of Ins2, Pdx1, and Mafa in islets from 6-month-old Pdx1-Cre;Vegfa^{fl/fl} mice (A) and 7-month-old Tm-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice (B), evaluated by quantitative RT-PCR. (A) Values are 0.91 ± 0.13 for Ins2 (n = 4; P > 0.05 vs. control), 0.73 ± 0.04 for Pdx1 (n = 4; **P < 0.01 vs. control) and 0.79 ± 0.11 for Mafa (n = 4; P > 0.05 vs. control). (B) Values are 1.46 ± 0.32 for Ins2, 2.31 ± 0.62 for Pdx1, and 1.50 ± 0.40 for Mafa (n = 3/genotype). For all three genes, P > 0.05 vs. control. (C,D) Transmission electron micrographs of islets from Tm-treated Vegfa^{fl/fl} (C) and Pdx1^{PB}-CreER;Vegfa^{fl/fl} (D) mice revealed normal insulin secretory granule morphology and density. Images were acquired at 5600x magnification. Scale bars are 2 µm; L, capillary lumen; N, nucleus. (E) Perifusion of islets isolated from Tm-treated mice. The effluent was collected at 3-minute intervals using an automatic fraction collector. Areas under the curve (AUC) for islet insulin secretory responses to the 16.7 mM glucose (G 16.7) and 16.7 mM glucose + 100 µM IBMX (G 16.7 + IBMX 100) stimuli were not significantly different in Tm-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice (n = 6) vs. Tm-treated Vegfa^{fl/fl} controls (n = 6).

Fig. 6. Inactivation of VEGF-A in the developing pancreas reduces postnatal β-cell proliferation. (A,B) Whole-mount immunohistochemistry labeling of Vegfa^{fl/fl} (A) and Pdx1-Cre;Vegfa^{fl/fl} pancreata (B) at e14.5 for vascular marker PECAM-1. (C) Pancreatic vessel density in embryonic pancreas; 1174 ± 57 vessels/mm² in Vegfa^{fl/fl} vs. 561 ± 17 vessels/mm² in Pdx1-Cre;Vegfa^{fl/fl} pancreata (n = 5, ***P < 0.001). (D,E) Embryonic pancreas at e14.5, immunolabeled for carboxypeptidase A1 (CPA1, green), SOX9 (blue), and PECAM-1 (red). (F,G) Embryonic pancreas at e14.5, immunolabeled for E-cadherin (E-cad, green) and
neurogenin 3 (Ngn3, red). (H-M) Pancreatic sections from Vegfdfl/fl and Pdx1-Cre;Vegfdfl/fl mice at postnatal day 1 (P1) were labeled for insulin (Ins, green) and PECAM-1, red in (H,I); insulin (Ins, green), glucagon (Gcg, red) and somatostatin (Som, blue) in (J,K); insulin (Ins, green) and phosphorylated histone H3 (pH3, red) in (L,M). (N,O) Pancreatic sections from 2 month old Vegfdfl/fl and Pdx1-Cre;Vegfdfl/fl mice were labeled for insulin (Ins, green) and BrdU (red). (P) Pancreatic insulin content in Vegfdfl/fl and Pdx1-Cre;Vegfdfl/fl mice at P1; 352 ± 18 ng in Vegfdfl/fl vs. 243 ± 17 ng in Pdx1-Cre;Vegfdfl/fl mice (n = 13-16/genotype, ***P = 0.0002). (Q) β-cell proliferation at P1, as measured by staining for pH3; 7.63% ± 0.59% in Vegfdfl/fl vs. 3.81% ± 0.09% in Pdx1-Cre;Vegfdfl/fl pancreata (n = 3, **P = 0.0031). (R) β-cell proliferation in 2 month old mice, as measured by BrdU labeling; 9.24% ± 1.15% in Vegfdfl/fl and 4.10% ± 0.33% in Pdx1-Cre;Vegfdfl/fl pancreata (n = 3, *P = 0.0373).

Fig. 7. Model of different roles for VEGF-A during development and in adult islets.

Developing islets endocrine cell progenitors recruit ECs as they are coalescing into islet cell clusters through a VEGF-A-dependent process (left side of figure). When VEGF-A was reduced early in development, fewer ECs are recruited, resulting in a hypovascularized islets, reduced β-cell proliferation and mass. When VEGF-A was reduced in adult islets (upper right of figure), vascularization was reduced, but β-cell proliferation and mass were unchanged.
Figure 1

A

Pdx1-Cre
Pdx1^{CreER}

VEGF-A inactivation

B

C

D

E

F

215x279mm (300 x 300 DPI)
Figure 2
Figure 3

(A) Pancreas Weight (g)

(B) Pancreas Weight (g)

(C) Insulin/Pancreas (pg)

(D) Insulin/Pancreas (pg)

(E) Insulin Area / Pancreas Area (%)

(F) Insulin Area / Pancreas Area (%)

(G) [Image of histological section]

(H) [Image of histological section]

(I) [Image of histological section]
Figure 4

A

- Vegfa^{Cre}, n = 9
- P_{x1-Cre}/Vegfa^{Cre}, n = 5
- *P* < 0.01

B

- Pre-Tm, *P* > 0.05

C

- 1 mo Post-Tm, *P* < 0.05

D

- 3 mo Post-Tm, *P* < 0.05

- Vegfa^{Cre} + Veh, n = 5
- P_{x1-Cre}/Vegfa^{Cre} + Veh, n = 6
- Vegfa^{Cre} + Tm, n = 5
- P_{x1-Cre}/Vegfa^{Cre} + Tm, n = 7

Blood Glucose (mg/dL)

Time (min)
Figure 7

- Slightly reduced vascularization but maintained β-cell mass
- Normal vascularization and islet mass
- Severely reduced vascularization, reduced β-cell proliferation and reduced islet mass

Legend:
- α-cell
- β-cell
- PP-cell
- endocrine/interstitial cell

215x279mm (300 x 300 DPI)
Supplementary Fig. 1
Supplementary Fig. 2
Supplementary Fig. 3

A
- $\text{Vegfa}^{+/+}, n = 5$
- $\text{Pdx1}^{Pb, CREER; Vegfa}^{-/-}, n = 7$

$P > 0.05$

B
- $\text{Vegfa}^{+/+} + \text{Veh}, n = 2$
- $\text{Pdx1}^{Pb, CREER; Vegfa}^{-/-} + \text{Veh}, n = 6$
- $\text{Vegfa}^{+/+} + \text{Tm}, n = 12$
- $\text{Pdx1}^{Pb, CREER; Vegfa}^{-/-} + \text{Tm}, n = 18$

$P > 0.05$

C
- $\text{Vegfa}^{+/+} + \text{Veh}, n = 2$
- $\text{Pdx1}^{Pb, CREER; Vegfa}^{-/-} + \text{Veh}, n = 6$
- $\text{Vegfa}^{+/+} + \text{Tm}, n = 3$
- $\text{Pdx1}^{Pb, CREER; Vegfa}^{-/-} + \text{Tm}, n = 6$

* $P < 0.05$

$\text{Pdx1}^{Pb, CREER; Vegfa}^{-/-} + \text{Veh}$ vs. $\text{Pdx1}^{Pb, CREER; Vegfa}^{-/-} + \text{Tm}$
Supplementary Fig. 4
Supplementary Fig. 5
Supplementary Fig. 6
SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. Inactivation of VEGF-A in adult β-cells. (A) VEGF-A secretion by cultured islets was analyzed by ELISA one week after treating 4-month-old mice with Tm or Veh. Values are 3.51 ± 0.13 pg/islet/48hr in vehicle-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} islets, 3.73 ± 0.44 pg/islet/48hr in 3 x 2 mg Tm-treated Vegfa^{fl/fl} islets, 0.19 ± 0.03 pg/islet/48hr in 3 x 2 mg Tm-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} islets, and 0.30 ± 0.07 pg/islet/48hr in 3 x 1 mg Tm-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} islets. ***P < 0.001 vs. Tm-treated Vegfa^{fl/fl} islets and vs. vehicle-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} islets; n = 3 per group. (B) Body weight in 6-month-old Vegfa^{fl/fl} and Pdx1-Cre;Vegfa^{fl/fl} mice; 35.9 ± 2.0 g in Vegfa^{fl/fl} mice and 37.87 ± 2.079 g in Pdx1-Cre;Vegfa^{fl/fl} mice (n = 15-16/genotype; P > 0.05). (C) Body weight in 7-month-old Tm-treated Vegfa^{fl/fl} and Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice; 24.0 ± 0.8 g in Vegfa^{fl/fl} mice and 23.9 ± 0.8 g in Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice (n = 14-18/genotype; P > 0.05).

Supplementary Figure 2. Islet VEGF-A inactivation reduces endothelial cell fenestrations.
Transmission electron micrographs of intraislet capillaries in Tm-treated Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice. Images were acquired at 15000x. Scale bar in B is 100 nm, and applies to panels A, C, and D. L, capillary lumen; N, endothelial cell nucleus; open arrowheads denote fenestrations and closed arrowheads denote caveolae.

Supplementary Figure 3. Impaired glucose tolerance develops more slowly in female Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice. Glucose tolerance testing was performed in female Vegfa^{fl/fl} and Pdx1^{PB}-CreER;Vegfa^{fl/fl} mice before tamoxifen (Tm) treatment (A), and one month (B) and three
months (C) following Tm or Veh treatment. Mice were fasted for 16 hours before intraperitoneal injection of 2 g/kg glucose. Data were analyzed by one-way ANOVA of the area under the curve.

Supplementary Figure 4. Insulin secretion is delayed but not reduced in Pdx1PB-

\textit{CreER;Vegfafl/fl} mice. A hyperglycemic clamp was performed on six-month-old Tm-treated male mice. One week after undergoing surgery to implant catheters in the carotid arteries and jugular veins, mice were fasted for 6 hours before infusing glucose to maintain a target blood glucose level of ~200 mg/dl. With the time of initial glucose infusion being \(t = 0\)’, arterial blood samples were taken at \(t = -15’, -5’, 2’, 3’, 4’, 5’, 10’, 20’, 30’, 40’, 50’, 60’, 70’, 80’, and 90’,\) and assessed for blood glucose, serum insulin and serum C-peptide levels. Data were analyzed by a two-way ANOVA with repeated measures, using Time and Genotype as factors. (A) Arterial blood glucose values. \(P < 0.0001\) for Time, \(P = 0.1689\) for Genotype, \(P = 0.1864\) for Interaction. (B) Glucose infusion rate. \(P < 0.0001\) for Time, \(P = 0.0108\) for Genotype, \(P = 0.0291\) for Interaction. (C) Serum insulin values. \(P < 0.0001\) for Time, \(P = 0.1701\) for Genotype, \(P = 0.5523\) for Interaction. (D) Serum C-peptide values. \(P < 0.0001\) for Time, \(P = 0.7764\) for Genotype, \(P = 0.2435\) for Interaction.

Supplementary Figure 5. Hif1α expression in islets with reduced vascular supply. (A,B)
Pancreatic cryosections from Pdx1-Cre;Vegfafl/fl and their controls were labeled with antibodies to Hif1α (red) and insulin (Ins, blue). (C) Relative gene expression of Gck, Glut2, and Hif1α in islets from 6-month-old Pdx1-Cre;Vegfafl/fl mice evaluated by quantitative RT-PCR. Values are \(0.85 \pm 0.02\) for Gck \((n = 3); *P = 0.0235\) vs. control), \(0.84 \pm 0.08\) for Glut2 \((n = 3); P = 0.1801\) vs. control), and \(0.83 \pm 0.05\) for Hif1α \((n = 3); P = 0.0755\) vs. control). (D,E) Pancreatic cryosections
from 7-month-old Tm-treated *Pdx1*<sup>PB-CreER;Vegfa^{fl/fl}* their controls were labeled with antibodies to Hif1α (red) and insulin (Ins, blue). Scale bar in A is 50 µm and corresponds also to B, D, and E.

Supplementary Figure 6. β-cell proliferation is unchanged following VEGF-A inactivation in adult islets. β-cell proliferation in adult mice was measured three months after Tm treatment using the proliferation marker Ki67. β-cell proliferation was 0.1341% ± 0.1341% in *Vegfa^{fl/fl}* mice and 0.06165% ± 0.02719% in *Pdx1*^{PB-CreER;Vegfa^{fl/fl}} mice (*P* > 0.05, *n* = 3 mice, at least 8000 β-cells counted per genotype).

Supplementary Table 1. Primers for quantitative real-time RT-PCR
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>TaqMan Assay ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gck</td>
<td>Mm00439129_m1</td>
</tr>
<tr>
<td>Glut2</td>
<td>Mm00446224_m1</td>
</tr>
<tr>
<td>Hif1a</td>
<td>Mm00468869_m1</td>
</tr>
<tr>
<td>Ins2</td>
<td>Mm00731595_gh</td>
</tr>
<tr>
<td>Kdr</td>
<td>Mm00440099_m1</td>
</tr>
<tr>
<td>Mafa</td>
<td>Mm00845209_sl</td>
</tr>
<tr>
<td>Pdx1</td>
<td>Mm00435565_m1</td>
</tr>
<tr>
<td>Rn18s</td>
<td>Hs99999901s1</td>
</tr>
<tr>
<td>Vegfa (custom-made loxP modification)</td>
<td>Mm00437306_m1</td>
</tr>
<tr>
<td>Vegfb</td>
<td>Mm00442102_m1</td>
</tr>
</tbody>
</table>

Supplementary Table 2. Sources and concentrations of primary antibodies

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Host Species</th>
<th>Cryosections</th>
<th>Whole Mount</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylase</td>
<td>rabbit</td>
<td>1:1000</td>
<td>-</td>
<td>Sigma</td>
</tr>
<tr>
<td>BrdU</td>
<td>rat</td>
<td>1:100</td>
<td>-</td>
<td>Abcam</td>
</tr>
<tr>
<td>Cpa1</td>
<td>goat</td>
<td>1:250</td>
<td>-</td>
<td>R&D Systems</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>mouse</td>
<td>1:500</td>
<td>-</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>Glucagon</td>
<td>rabbit</td>
<td>1:100</td>
<td>-</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Glucagon</td>
<td>guinea pig</td>
<td>-</td>
<td>1:10000</td>
<td>Linco</td>
</tr>
<tr>
<td>Hif-1α</td>
<td>rabbit</td>
<td>1:1000</td>
<td>-</td>
<td>Novus Biologicals</td>
</tr>
<tr>
<td>Insulin</td>
<td>guinea pig</td>
<td>1:200</td>
<td>-</td>
<td>Linco</td>
</tr>
<tr>
<td>Insulin</td>
<td>guinea pig</td>
<td>1:500</td>
<td>1:100</td>
<td>Dako</td>
</tr>
<tr>
<td>Ki67</td>
<td>rabbit</td>
<td>1:500</td>
<td>-</td>
<td>Abcam</td>
</tr>
<tr>
<td>MafA</td>
<td>rabbit</td>
<td>1:10000</td>
<td>-</td>
<td>R. Stein</td>
</tr>
<tr>
<td>Ngn3</td>
<td>goat</td>
<td>1:5000</td>
<td>-</td>
<td>G. Gu</td>
</tr>
<tr>
<td>PDX1</td>
<td>goat</td>
<td>1:10000</td>
<td>1:5000</td>
<td>C. V. E. Wright</td>
</tr>
<tr>
<td>PECAM1</td>
<td>rat</td>
<td>1:50</td>
<td>1:100</td>
<td>BD Pharmingen</td>
</tr>
<tr>
<td>pH3</td>
<td>rabbit</td>
<td>1:500</td>
<td>-</td>
<td>Upstate</td>
</tr>
<tr>
<td>Somatostatin</td>
<td>sheep</td>
<td>1:500</td>
<td>-</td>
<td>American Research Products</td>
</tr>
<tr>
<td>Sox9</td>
<td>rabbit</td>
<td>1:500</td>
<td>-</td>
<td>Millipore</td>
</tr>
<tr>
<td>VEGF-A</td>
<td>goat</td>
<td>1:100</td>
<td>-</td>
<td>R&D Systems</td>
</tr>
</tbody>
</table>