Acute Administration of Unacylated Ghrelin Has No Effect on Basal or Stimulated Insulin Secretion in Healthy Humans

Jenny Tong, 1Harold W Davis, 2Suzanne Summer, 3Stephen C Benoit, 1Ahrar Haque, 4Martin Bidlingmaier, 1,5Matthias H Tschöp, 1,6David D’Alessio

1Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, OH
2Clinical Translational Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
3Department of Psychiatry, University of Cincinnati, Cincinnati, OH
4Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
5Institute for Obesity and Diabetes, Helmholtz Center Munich and Division of Metabolic Diseases, Dept. of Medicine, Technical University Munich, Germany
6Cincinnati Veterans Affairs Medical Center, OH

Running title: unacylated ghrelin and insulin secretion

Key words: ghrelin, insulin secretion, glucose tolerance, human

Word count: Abstract –224; Main text – 3554

Figure: 8
Tables: 0
Corresponding author:

Jenny Tong, MD, MPH

260 Stetson Street, Suite 4200

Cincinnati, OH 45219-0547

Email: jenny.tong@uc.edu

Telephone: 513-558-4446

Fax: 513-558-8581
Abstract

Unacylated ghrelin (UAG) is the predominant ghrelin isoform in the circulation. Despite its inability to activate the classical ghrelin receptor, preclinical studies suggest that UAG may promote β-cell function. We hypothesized that UAG would oppose the effects of acylated ghrelin (AG) on insulin secretion and glucose tolerance. AG (1 µg/kg/h), UAG (4 µg/kg/h), combined AG+UAG, or saline were infused to 17 healthy subjects (9 M/8 F) on 4 occasions in randomized order. Ghrelin was infused for 30 min to achieve steady-state levels and continued through a 3-h IV glucose tolerance test. The acute insulin response to glucose (AIRg), insulin sensitivity index (S_t), disposition index (DI), and IV glucose tolerance (k_g) were compared for each subject during the 4 infusions. AG infusion raised fasting glucose levels but had no effect on fasting plasma insulin. Compared to the saline control both AG and AG+UAG decreased AIRg, but UAG alone had no effect. S_t did not differ among the treatments. AG, but not UAG, reduced DI and k_g and increased plasma growth hormone. UAG did not alter growth hormone, cortisol, glucagon or free fatty acid levels. UAG selectively decreased glucose and fructose consumption compared to the other treatments. In contrast to previous reports, acute administration of UAG does not have independent effects on glucose tolerance or β-cell function, and neither augments nor antagonizes the effects of AG.
Introduction

The orexigenic peptide ghrelin is synthesized primarily in the stomach and has been implicated in the regulation of energy balance and glucose homeostasis (1; 2). Following translation intracellular ghrelin is acylated at the serine-3 residue of the peptide (1), but both acylated and unacylated ghrelin (AG and UAG), are released to the circulation. Acylation of ghrelin is required for binding and activation of the growth hormone secretagogue receptor (GHSR) type-1a (3), the principle target for AG. A number of in vitro studies have demonstrated that UAG does not bind or activate the GHSR (1; 4). Nonetheless, a case has been made for biologic activity for UAG (5). Ghrelin is the only orexigenic peptide known to circulate in the bloodstream and has been proposed to act as hunger signal involved in body weight regulation through a GHSR dependent mechanism (6).

Both ghrelin and the GHSR are expressed by cells in the pancreatic islets (7-9), raising the possibility of a novel system involved in islet hormone secretion through either endocrine or paracrine mechanisms. AG inhibits glucose-stimulated insulin secretion in β-cell lines and in animal models (9-11). In humans, AG administration suppresses insulin secretion, induces peripheral insulin resistance, and impairs glucose tolerance (12-15). These findings raise the possibility that the ghrelin-GHSR system contributes to the regulation of β-cell function and could be adapted to therapeutic uses.

UAG is the predominant form of ghrelin in the circulation, where UAG and AG exist in variable ratios reported as anywhere from 2:1 to 9:1 (4; 16; 17). Recently several groups have reported that UAG can counteract the effect of AG on glucose metabolism and has “antidiabetic” properties (18-21). For example, UAG has been shown to stimulate insulin secretion in INS-1E
cells (22), and to inhibit glucose output from porcine hepatocytes (18). Overexpression of UAG in adipose tissue is associated with improved glucose tolerance in mice (23). UAG also dose dependently increases insulin secretion in rats, an effect that was abolished by the co-administration of AG (24). In humans, UAG (when given together with AG) has been reported to counteract the actions of AG to impair glucose tolerance, suppress insulin secretion, and promote lipolysis (19; 20). Overnight infusion of UAG to healthy subjects improved glucose tolerance, increased postprandial insulin secretion, and decreased free fatty acid levels (25). Improvement in glucose tolerance and insulin sensitivity was also observed in obese subjects with type 2 diabetes receiving pharmacologic doses of UAG (26). However, these results have not been consistent, and in several studies conducted by the same investigators no effects of UAG on insulin or glucose levels were observed when the peptide was administered alone (19; 20; 27). Therefore, despite the potential importance of understanding a potential role of UAG in the regulation of glucose homeostasis this area remains unclear.

The objective of this study was to determine whether UAG has an independent effect on insulin secretion and glucose tolerance and/or acts to antagonize the effects of AG. We hypothesized that UAG alone would enhance insulin secretion and improve glucose tolerance in healthy humans, and that co-administration of UAG would blunt the effects of AG to suppress β-cell secretion. In order to test this hypothesis synthetic human AG, UAG, a combination of AG and UAG, and saline (control) were administered intravenously to healthy lean subjects on 4 separate days. Insulin secretion, whole body insulin sensitivity, and glucose tolerance were determined using the frequently sampled IV glucose tolerance test. As secondary endpoints, the effects of AG and UAG on appetite, thirst, caloric intake and macronutrient preference were also examined.
Patients and Methods

Subjects: Healthy volunteers between the ages of 18 and 45 years with a BMI between 18 and 29 kg/m² were recruited from the greater Cincinnati area. Subjects with a history of impaired fasting glucose or diabetes mellitus, recent myocardial infarction, congestive heart failure, active liver or kidney disease, growth hormone deficiency or excess, neuroendocrine tumor, anemia, or who were on medications known to alter insulin sensitivity were excluded.

All study procedures were conducted at the Clinical and Translational Research Center (CTRC) at Cincinnati Children’s Hospital Medical Center. All study participants gave informed consent for the study by signing a form approved by University of Cincinnati and Cincinnati Children’s Hospital Medical Center Institutional Review Boards (protocol number 10071904).

Experimental protocol: Subjects arrived at the CTRC between 0730 and 0800 after a 10-12 hour fast on four occasions separated by at least five days. IV catheters were placed in veins of both forearms for blood sampling and infusion of test substances. The arm with the sampling catheter was placed in a 55°C chamber to maintain consistent blood flow. After withdrawal of fasting blood samples, a bolus dose of synthetic human AG (Bachem Americas, CA; 0.28 µg/kg) or synthetic human UAG (CS Bio, Menlo Park, CA; 1.1 µg/kg) or the combination of AG and UAG were given followed by a continuous IV infusion with AG at 1.0 µg/kg/hr or UAG at 4.0 µg/kg/hr or the combination of AG (1.0 µg/kg/h) and UAG (4.0 µg/kg/h), respectively, for the duration of the study. Steady state ghrelin levels in the circulation were expected within 30 minutes of ghrelin infusion based on the pharmacokinetic data collected from our previous
studies (17). AG and UAG levels were measured at -15, 0, 5, 15, 25, 30, 60, 90, 150, and 210 minutes of infusion.

Following 30 minutes of peptide/saline infusion, an IV bolus of 50% dextrose solution (11.4 g/m² body surface area) was given as the commencement of an insulin-modified frequently sampled IV glucose tolerance test (28). Subsequently, regular insulin (0.025 u/kg body weight) was infused intravenously over 5 minutes, starting 20 minutes after the glucose injection. Blood samples were drawn for glucose, insulin and C-peptide measurement at 32 time points over the 3 hours following glucose administration. Blood was collected into 4 mM AEBSF, a protease and esterase inhibitor, and 200 µL 1 N HCl was added to every milliliter of plasma for ghrelin measurements (29; 30). Blood samples were placed on ice and plasma/serum was separated by centrifugation within one hour, and stored at -80° until assay. Blood pressure, respiration, heart rate, and body surface temperature were monitored every 15 minutes during the study procedure. At the end of each procedure, subjects were given a meal of their choice and the same meal was repeated for all subsequent visits. Portions of the main entrée were doubled to ensure that subjects have sufficient food to fulfill their appetite. Each food item was carefully weighed before and after serving by the study dietitian, and nutrient intake of foods consumed (gram weight, kilocalories, fat, protein, and carbohydrates) was calculated using Nutrition Data System for Research (NDSR) 2011, Nutrition Coordinating Center, Minneapolis, MN; subjects were unaware that their food intake was monitored. Hunger and thirst were assessed at two time points (14 minutes before and 165 minutes after ghrelin/saline infusion) using a 100-mm visual analog scale (VAS) developed by Flint et al. (31).
Assays: Details of biochemical assays were described previously (32). Briefly, blood glucose concentrations were determined by the glucose oxidase method using a glucose analyzer (YSI 2300 STAT Plus; Yellow Springs Instruments, Yellow Springs, OH). Plasma immunoreactive insulin levels were measured using a double-antibody radioimmunoassay (RIA) (Millipore, St Charles, MO) (33). Plasma AG and DAG levels were measured using separate sensitive and specific two-site sandwich ELISAs (16). The sensitivity of the AG assay was 6.7 pg/ml with an intra- and inter-assay coefficient of variations of ~ 14 and 18% (16). The sensitivity of the DAG assay was 4.6 pg/ml with an intra- and inter-assay coefficient of variations of ~ 13 and 20% (16). Glucagon was measured by RIA (Millipore Life Sciences, Billerica, MA), and serum concentrations of human growth hormone were measured by a sandwich immunoassay using the automated Immulite 2000 chemiluminescent assay system (Siemens, Bad Nauheim, Germany) (34). Plasma free fatty acids were measured using a specific colorimetric assay (Wako Diagnostics, Richmond, VA). All samples were assayed in duplicate, and specimens from the 4 studies in each participant were run in the same assay.

Calculations: Fasting values of insulin and glucose were designated as the mean of samples drawn before ghrelin infusion. Baseline levels were designated as the mean of samples -15 - 0 minutes before the IV glucose tolerance test. The acute insulin response to glucose (AIRg) was calculated as the average of plasma insulin increments above basal at 2, 3, 4, 5, 6, 8 and 10 minutes following IV glucose administration. Insulin sensitivity was quantified as the insulin sensitivity index (SI) using the minimal model of glucose kinetics (35). The disposition index (DI), which provides a measure of β-cell function adjusted for insulin sensitivity, was calculated as SI × AIRg based on the hyperbolic relationship of the two measures (36). The glucose
disappearance constant, k_g, is an estimate of IV glucose tolerance (37) and was computed as the slope of the natural logarithm of glucose from 10 to 19 minutes.

Statistical analysis: Main outcomes of interest (AIRg, SI, DI, and k_g) and secondary outcomes (nutrient intake) for the 4 treatments (control, AG, DAG, AG+DAG) were compared within subjects using one-way analysis of variance (ANOVA). In addition, insulin, glucose, ghrelin, growth hormone, glucagon, cortisol and free fatty acid concentrations were analyzed using repeated measures two-way ANOVA where both treatment and time effects were assessed. Posthoc analysis to control for multiple comparisons was performed using Dunnett's test. Data were analyzed using GraphPad Prism version 5.0 (GraphPad Software). All results are expressed as mean ± SEM unless otherwise noted.
Results

Subject characteristics: A total of 20 healthy subjects were enrolled in the study: 17 subjects (9 males and 8 females) aged 26 ± 1 year with BMI of 24 ± 1 kg/m² completed the study; 3 subjects who had one or more studies but did not complete the four infusion protocol were not included in the analysis.

Ghrelin pharmacokinetics: Following a bolus and infusion, the peak plasma AG concentration (C_{max}) was ~ 40-fold higher than during the saline infusion (1.9 ± 1.3 vs. 0.045 ± 0.02 ng/mL; Fig 1A). A similar fold increase was seen with the AG+UAG infusion ($C_{\text{max}} = 1.7 \pm 0.6$ ng/mL) (Fig 1A and 1C). The AG infusion also raised plasma UAG concentration by about 17-fold (1.3 ± 1.1 vs. 0.078 ± 0.03 ng/mL AG infusion vs. saline; Fig 1B) consistent with some de-acylation in the plasma. When UAG was given alone or combined with AG, the C_{max} was ~ 200-fold higher than the saline control (UAG: 15.9 ± 4.9, UAG + AG: 15.5 ± 3.6 ng/mL, saline: 0.078 ± 0.03 ng/mL; Fig 1B and 1D). UAG infusion did not alter plasma AG concentration (C_{max}: 0.05 ± 0.02 vs. 0.045 ± 0.02 ng/mL, UAG infusion vs. saline; Fig 1A).

Effects of exogenous ghrelin on β-cell function and glucose tolerance: AG infusion raised fasting glucose levels (Figure 2A and 2C, overall effect $p < 0.05$), but none of the treatments changed concentrations of fasting plasma insulin (Figure 2B and 2D). Compared to the saline control both AG and AG + UAG decreased AIRg, but UAG alone had no effect (saline 986 ± 366, UAG 772 ± 226, AG 642 ± 237, AG+UAG 578 ± 210 pM/L; $p < 0.01$ for both AG treatments vs. saline; Fig 3A). S_1 was not affected by any of the ghrelin treatments (Fig 3B). The adjusted insulin secretion, DI, was significantly lower when AG or combined AG+UAG were infused, but did
not change when UAG was given (saline: 2486 ± 340, AG: 1321 ± 195, UAG 2248 ± 416, AG+UAG: 1370 ± 223; p < 0.001 for both AG treatments vs. saline; Fig 3C). IV glucose tolerance (\(k_g\)), was lower during AG infusion (0.018 ± 0.003 vs. 0.022 ± 0.002, AG vs. saline, p < 0.05) but not during UAG and AG+UAG infusions (Figure 3D).

Effects of exogenous ghrelin on other hormones and substrates: AG and the combined AG + UAG infusion increased serum growth hormone 20-fold from baseline, while UAG and saline had no effect (Figure 4A). None of the ghrelin infusions changed plasma glucagon levels significantly during fasting or the glucose tolerance test (Figure 4B). Serum cortisol concentration on the other hand was elevated during AG and AG+UAG infusion as compared to saline or UAG (Figure 4C). Neither AG nor UAG altered fasting serum fatty acid concentrations in the first 30 minutes of infusion. IV glucose suppressed fatty acids by about 50% with either ghrelin or saline treatment, but levels were higher at 120 and 180 min following IV glucose injection with AG treatment compared to saline and UAG (Figure 4D).

Effects of exogenous ghrelin on nutrient intake, hunger and thirst ratings:
Subjects consumed more food at the end of a 3.5 h AG or AG+UAG infusion then the UAG alone infusion (Figure 5A). The pattern of caloric intake was similar to that seen with food intake by weight but did not reach significance (Figure 5B). Water intake during the meal was lower with UAG than with AG (Figure 5C). When macronutrient consumption was compared, fat and protein intake were similar across treatments but less carbohydrate was consumed during UAG infusion than during AG+UAG infusion but did not differ from AG infusion (Figure 5D-F). Interestingly, UAG treatment decreased glucose and fructose consumption as compared to saline,
AG or AG+UAG (Figure 5G-H). The intake of disaccharides and polysaccharides (lactose, galactose, maltose, starch, or fiber) were not different between groups (data not shown) except for sucrose, which consumption was lower following UAG as compared to AG or AG+UAG infusions (Figure 5I). The decreased in food intake and carbohydrate intake with UAG compared to AG did not correlate with decreased hunger, increased satiation (Figure 6) or the desire for “eating something sweet” (Figure 7), respectively. All four treatments led to a similar change in these parameters (Figure 6-7). We did not observe any between group difference on their feeling of thirst or preference for sweet, salty, fatty foods or alcohol before and after ghrelin infusion using a visual analog scale (Figure 6-7). Furthermore, ghrelin did not affect the intake of essential amino acids, fatty acids (saturated, monounsaturated or polyunsaturated fatty acids), cholesterol or sodium (data not shown).

Side effects: Both AG and UAG infusions were well tolerated. No serious adverse events occurred during the study. One subject who was later diagnosed with hypertension withdrew from study due to elevated blood pressure during the first study visit (UAG infusion). This subject was asymptomatic during the UAG infusion.
Discussion

Since its discovery in 1999, several biological functions have been ascribed to ghrelin. Besides its well-known stimulatory effect on growth hormone secretion, ghrelin has been implicated in the regulation of energy and more recently on glucose metabolism. UAG is the predominant form in the circulation and there it has been proposed that UAG has biologic activity, possibly through a receptor distinct from GHSR (5). Our study was designed to clarify the role of UAG in the regulation of β-cell function in healthy individuals. We found that UAG did not alter insulin secretion, insulin sensitivity or IV glucose tolerance when administered alone or in combination with AG acutely. Unlike AG, UAG did not stimulate GH or cortisol secretion or increase lipolysis. These findings indicate that in healthy humans UAG does not affect the key parameters of glucose tolerance or alter counterregulatory hormone secretion. On the other hand UAG had effects on feeding behavior, selectively reducing glucose and fructose consumption - a novel finding that warrants further investigation.

The AG:UAG ratio in the circulation had been reported to be 1:2 to 1:9 depending on the assay used, the species, and the nutritional state at the time of measurement (4; 16). At the time this study was initiated the best estimate of the ratio of AG:UAG in humans was 1:4 (16), and this was the rationale for the choice of the UAG dose in our study. We used a supraphysiologic amount of AG that we have previously shown to provide a reliable effect on insulin secretion (30; 32). While the plasma concentrations of ghrelin peptides achieved in our study were much higher than those occurring naturally, our goal was to maximize the ability to detect any effects of UAG. It is worth considering that concentrations of ghrelin are likely to be much higher in the
islet such that elevated plasma levels may have some physiologic relevance. A major difference between previous human studies of ghrelin (25; 26) and ours was that we assessed the effects of steady state UAG on both basal and stimulated β-cell function. Work by Bergman et al. and others (38) has demonstrated the importance of taking into account tissue insulin sensitivity when evaluating β-cell function. Therefore we measured insulin secretion and insulin sensitivity simultaneously with the IV glucose tolerance test to get an unconfounded assessment of β-cell function.

Our finding of a lack of effect of UAG on insulin secretion is consistent with the findings reported by Broglio et al. and Gauna et al. using a lower dose of UAG (1 µg/kg IV bolus) (19; 20). No effect of UAG on fasting or postprandial insulin or glucose levels was seen in those studies. However, when these investigators gave UAG together with AG, the actions of AG to increase blood glucose were attenuated. We did not observe this counterbalancing effect of UAG on AG when they were administered together, even with a UAG dose that was higher than that used in previous studies. UAG has very low affinity for the GHSR-1a but in the high nanomolar to low micromolar range can activate the receptor and functions as a full agonist in vitro (39). However, our findings suggest that circulating UAG at concentrations, even at supraphysiologic amounts, does not antagonize activation of GHSR by AG in vivo. We cannot rule out possible paracrine/neurocrine effects of UAG because there may be settings where local concentrations are even higher than the plasma levels achieved in this study.

The observations reported here differ from those of several other groups. Benso et al. gave UAG overnight at a dose of 1 µg/kg/h and demonstrated a decrease in glucose and fatty acids over the
ensuing 16 hours, with a transient increase of postprandial plasma insulin (25). The same
duration of UAG infusion at 3 and 10 µg/kg/h in obese, well-controlled type 2 diabetic subjects
decreased average blood glucose as reflected by continuous glucose monitoring, but did not have
any effect on postprandial insulin (26). Differences in study design (meal tolerance test vs. IV
glucose tolerance test), duration of peptide administration (16-hour vs. 3.5-hour infusion), as
well as subject characteristics may explain some of the discordance between these findings and
what we report here. For example, it is plausible that the high plasma concentration of UAG
during a 16-hour administration of peptide leads to activation of brain centers that do not occur
with shorter infusions. However, based on our results it seems unlikely that circulating UAG, in
contrast to AG, has immediate effects on islet function or insulin sensitivity.

The effects of ghrelin on growth hormone, cortisol and prolactin secretion are likely to be GHSR
dependent (19). For example, the effect of ghrelin to stimulate growth hormone is absent in
GHSR KO mice (40). The lack of an acute stimulatory effect of UAG on growth hormone and
cortisol in our study is consistent with the absence of GHSR activation that has been previously
reported (41). In comparison, activation of pituitary function by AG, in our study and others (19;
30; 32; 42), is likely to be an endocrine action of this peptide mediated acutely. So too the acute
effect of intravenous AG to enhance lipolysis and increase fatty acid levels. Our findings are
consistent with endocrine actions of AG, but not UAG, during 3-4 h administrations.

Ad libitum food intake is increased by AG in humans (43), but its impact on macronutrient
intake has not been studied. UAG has been shown to either decrease or have no effect on food
intake in rodents (43; 44), but this has not been studied previously in humans. We found that
food intake was decreased following UAG infusion as compared to AG or AG+UAG infusions, but not different from saline control. Interestingly, the consumption of monosaccharides (glucose and fructose) as well as sucrose, a disaccharide that is composed of glucose and fructose, was reduced by UAG (Figure 5I). This finding is compatible with previous work showing the ghrelin system to be involved in the consumption of sweets (45). Peripheral injection of AG increases, whereas a GHSR-1a antagonist reduces, the intake of sucrose in rats (45). In our study, AG showed a trend towards higher food intake and higher carbohydrate intake but did not reach statistical significance. While the effect of ghrelin peptides on food intake was a secondary aim in this study, and not powered adequately to make definitive conclusions, the results here are suggestive and bear further investigation.

In conclusion, acute administration of a pharmacological dose UAG does not alter glucose-stimulated insulin secretion, insulin sensitivity or glucose tolerance. Moreover, the combination treatment of UAG with AG showed similar effects as single AG infusion, indicating that the non-acylated form is not a significant antagonist of the GHSR in vivo. These findings indicate that although UAG is the predominant ghrelin species in the human circulation, it does not have important effects on insulin secretion or plasma glucose and fatty acid regulation.

Author Contributions:
J.T. designed the study, collected and analyzed the data, and was the primary author. H.W.D., S.S., and A.H. assisted with data collection, contributed to discussion, reviewed/edited
manuscript. M.B. assisted with data collection, reviewed/edited manuscript. S.B., M.H.T., and D.D. contributed to discussion, reviewed/edited manuscript.

Acknowledgments:

Funding for this research is provided by NIH/NIDDK (1R03DK89090, 5K23DK80081 to J.T. and R0157900 to D.D.) and supported in part by USPHS Grant #UL1 RR026314 from the National Center for Research Resources, and by National Mouse Metabolic Phenotyping Center (U24 DK059630), NIH. We want to thank the CTRC nursing staff, Brianne Paxton, Yongmei Zhao, and Elizabeth Stambrook for their excellent support for the study. Dr. Jenny Tong is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

We have no conflict of interest to declare.
Figure legends:

Figure 1: Plasma acylated ghrelin (AG) and unacylated ghrelin (UAG) ghrelin levels during continuous IV infusions (0 to 210 minutes) of AG (1 µg/kg/h), UAG (4 µg/kg/h), combined AG (1 µg/kg/h) and UAG (4 µg/kg/h), or saline in healthy men and women. A 180-min frequently sampled IV glucose tolerance test (IVGTT) was conducted between 30 and 210 min after ghrelin infusion begun.

Figure 2: Fasting plasma glucose and insulin levels during AG (1 µg/kg/h), UAG (4 µg/kg/h), combined AG (1 µg/kg/h) and UAG (4 µg/kg/h), or saline infusions in healthy men and women. *p<0.05; a – AG vs. saline, b – AG+UAG vs. saline.

Figure 3: An IVGTT was performed between 30 and 210 min during ghrelin or saline infusion. The acute insulin response to IV glucose (AIRg) (A), insulin sensitivity index (S\text{I}) (B), disposition index (DI) (C), and glucose disappearance constant (k\text{g}) (D) determined during infusions of AG, UAG, combined AG and UAG, or saline. *p < 0.05, **p < 0.01, ***p<0.001.

Figure 4: Plasma human growth hormone (GH) (A), glucagon (B), cortisol (C), and free fatty acid (FFA) (D) concentrations during a 210-minute infusion of AG, UAG, combined AG and UAG, or saline in healthy men and women. An IVGTT was performed between 30 and 210 minutes. IV glucose was administered following 30 minutes of ghrelin or saline infusion. Insulin at 0.025 U/kg was given as a short IV infusion between 50-55 minutes. *p < 0.05, **p<0.01, ***p < 0.001; a – AG vs. saline, b – AG+UAG vs. saline.
Figure 5: Nutrients consumption was measured in the post-study meal provided at the end of each infusion. Subjects selected the meal at their first visit and were given the same meal at each subsequent visit. The consumption of food measured in grams (A), the total calorie intake (B), the water (C), fat (D), carbohydrates (E), protein (F), glucose (G), fructose (H), and sucrose (I) intake from meals were compared between AG, UAG, AG+UAG, and saline infusions. *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 6: The ratings of hunger, satisfaction, fullness and appetite were measured using a visual analog scale in healthy men and women 14 min before and 165 min after ghrelin/saline infusion.

Figure 7: The rating of the desire for sweet, salty, savory and fatty foods were measured using a visual analog scale in healthy men and women 14 min before and 165 min after ghrelin/saline infusion.

Figure 8: The ratings of thirst and fluid preference were measured using a visual analog scale in healthy men and women 14 min before and 165 min after ghrelin/saline infusion.
Reference:

Figure 1
242x152mm (300 x 300 DPI)
Figure 2
254x153mm (300 x 300 DPI)
Figure 3
200x145mm (300 x 300 DPI)
Figure 4

249x198mm (300 x 300 DPI)
Figure 5
252x194mm (300 x 300 DPI)
Figure 6
243x198mm (300 x 300 DPI)
Figure 7
Figure 8
254x136mm (300 x 300 DPI)