Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons

Running title: Glut4 neuron ablation causes metabolic defects

Hongxia Ren¹, Taylor Y. Lu¹, Timothy E. McGraw², Domenico Accili¹

¹Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians & Surgeons, New York, NY 10032

²Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065

Corresponding author: Dr. Accili

1150 St Nicholas Ave, Rm237

New York, NY 10032

Email: da230@cumc.columbia.edu

Tel: 212-851-5330

Fax: 212-851-5335

Word count: 3997

Figures: 8

Supplemental Figures: 4
SUMMARY

The central nervous system (CNS) utilizes glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often co-localize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons, and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone (MCH) neurons but has limited effect on NPY/AgRP and POMC neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4-neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism.
INTRODUCTION

The central nervous system (CNS) plays an integral role in maintaining glucose homeostasis (1). It exerts systemic effects on organismal turnover and storage of glucose by promoting hormone release and through sympathetic and parasympathetic innervation of peripheral organs (2). In addition, the CNS is a target organ of diabetes complications, such as stroke, hypoglycemia unawareness as well as sympathetic dysfunction, not to mention the longstanding and poorly understood relationship between cognitive dysfunction and diabetes (3). Despite the established role of the CNS in metabolism, the identities of effector neurons remain elusive.

We have previously shown that the insulin-responsive glucose transporter, Glut4, is a marker of a distinct subset of neurons (4). We are agnostic as to the function of Glut4 itself in these neurons, but we have pursued the hypothesis that it represents a vestigial marker of their regulatory metabolic functions. This concept is borne out by the finding that ablating insulin receptors (InsR) in a constellation of Glut4-expressing tissues (muscle, fat, and neurons) causes overt diabetes (4), in contrast with the mild metabolic phenotypes observed following InsR knockout in either muscle, fat, or both (5). These findings highlight the potential metabolic function of InsR signaling in Glut4 neurons, as well as the latter’s distinct neuroanatomical identity.

Previous studies identified Glut4 expression in the brain (6; 7). We have found Glut4-expressing neurons in the CNS among cortical pyramidal neurons, cerebellar Purkinje-like, olfactory bulb, hippocampal, and hypothalamic neurons (4). Given their anatomic and morphological differences, Glut4 neurons are likely to mediate several processes. To begin to
clarify their metabolic contribution, we combined cell ablation and metabolic profiling studies to interrogate their hypothalamic functions. Ablation of hypothalamic Glut4-expressing neurons resulted in anorexia and fasting hyperglycemia, altering the response to insulin and leptin. We propose that hypothalamic Glut4 neurons constitute a distinct neuronal entity and mediate CNS effects on energy balance and peripheral metabolism.
RESEARCH DESIGN AND METHODS

Mice

*Gt(Rosa)*26Sor^{tm9(CAG-tdTomato)Hze} and C57BL/6-*Gt(Rosa)*26Sor^{tm1(HBEGF)Awai} mice were from The Jackson Laboratories. The Columbia University Animal Care and Utilization Committee approved all procedures. Normal chow diet (NCD) had 62.1% calories from carbohydrates, 24.6% from protein and 13.2% from fat (PicoLab rodent diet 20, 5053; Purina Mills); HFD had 20% calories from carbohydrates, 20% from protein and 60% from fat (D12492; Research Diets). We measured weight and length to calculate body mass index and estimated body composition by nuclear magnetic resonance (Bruker Optics). We generated *Glut4-Cre;Rosa-iDTR* and *Pomc-Cre;Rosa-iDTR* mice by mating *Glut4-Cre* or *Pomc-Cre*– male transgenic mice with female *Rosa-iDTR* mice and genotyped them as previously described (4).

Metabolic analyses

We measured food intake and refeeding response as described (40), using a TSE Labmaster Platform (TSE Systems) for indirect calorimetry and activity measurements (41). We used ELISA for leptin, insulin, and glucagon measurements (Millipore), and colorimetric assays for metabolite measurement (4).

Stereotactic injections

We performed stereotactic manipulations in 3- to 4-month-old mice. We placed cannulae and allowed 1 week for recovery (bilateral targeting -1.5 mm anterior and 0.4 mm lateral to bregma and 4.7 mm below the skull surface). We verified correct positioning of the cannulae by injecting methylene blue (1%) after killing. To ablate cells, we injected DTA at a dose of
4ng per mouse (injector with 1mm projection). Control mice (carrying Rosa-DTR allele) are littermates of Glut4-neuron-ablated mice (carrying Glut4-Cre;Rosa-DTR alleles). Both control and Glut4-neuron-ablated mice received DTA injection. Only mice carrying Glut4-Cre;Rosa-DTR alleles are susceptible to DTA-mediated cell death. To trace neuronal projection, we injected Ad-iZ-EGfpf 1ul to the bilateral cannula. For GABA infusion, Alzet 14 day micro-osmotic pumps (model 1002, Durect, Cupertino, CA, USA) loaded with bretazenil (60 ng/ml in saline plus 0.2% DMSO; Sigma-Aldrich, St Louis, MO, USA) were implanted subcutaneously on the back of cannulated mice immediately after DTA injection. The minipumps dispensed bretazenil at a rate of 15 ng/hr. For immunohistochemistry studies, we perfused mice 4-5 hr after refeeding.

Immunostaining

We processed mouse brains and cut 10-µm-thick coronal (unless otherwise noted) sections for immunohistochemistry as described (40), using pAkt (Cell Signaling #4060), pStat3 (Cell Signaling #9131), pS6 (Cell Signaling #4858), and TUNEL kit (Roche Applied Sciences). Sagittal sections and confocal microscopy (Zeiss LSM710) were used for tracing studies in the hindbrain. Scale bar = 100µm.

RNA procedures

We extracted RNA with Trizol (Invitrogen) and reverse transcribed with Superscript II reverse transcriptase. We performed quantitative PCR using primers spanning introns. Primer sequences are available upon request.
Flow cytometry and quantification of neurons

We dissociated mediobasal hypothalami from neonates with papain dissociation kit (Worthington Biochemical). We gated live neurons to collect Rfp–positive and/or Gfp-positive neurons. We analyzed the FACS data using Flowjo software. We quantified Glut4, NPY, and POMC neurons in adults by counting fluorescent cells in ARH sections using Image J software.

Statistical analyses

We analyzed data with Student’s t–test or one–way ANOVA using GraphPad Prism and Partek Genomic Suite software. We used the customary threshold of $P < 0.05$ to declare statistical significance.
RESULTS

Ablation of basal hypothalamic Glut4 neurons in adult mice

Mice are not susceptible to diphtheria toxin A (DTA), due to lack of diphtheria toxin receptor (DTR) (8). We took advantage of this property and introduced a Rosa-iDTR transgene expressing diphtheria toxin receptor (DTR) into Glut4-Cre mice to generate Glut4-Cre; Rosa-iDTR mice. DTR is inserted into the Rosa26 locus and maintained inactive by a lox-stop-lox sequence preceding the DTR cDNA. Upon Cre-mediated excision, the lox-stop-lox sequence is removed, leading to DTR expression, and rendering Glut4-expressing cells susceptible to DTA in Glut4-Cre; Rosa-iDTR mice.

To ablate basal hypothalamic Glut4 neurons, we delivered DTA to that location by stereotactic injection. 48 hr after DTA injection, we sacrificed mice and performed terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to document cell loss. We detected TUNEL–positive cells in the basal hypothalamus, including arcuate, ventromedial, and lateral hypothalamic nuclei, with sporadic distribution to the dorsomedial nucleus (Figure 1A). We didn’t see any TUNEL–positive cells in other brain regions, including regions with high levels of Glut4 expression, such as hippocampal field CA1 (CA1) and dentate gyrus (DG) (Figure 1A) (4). In addition, we didn’t detect peripheral toxicity induced by DTA in Glut4-expressing tissues outside the CNS, such as muscle and fat (data not shown). To confirm the loss of Glut4 neurons, we performed immunostaining with Glut4 antibody (Figure 1B). Glut4 neurons were detectable in the basal hypothalamus of control mice, but were absent in the ablated mice (Figure 1B). As a control, hippocampal Glut4 neurons were well preserved (Figure 1B).
Changes in energy homeostasis after Glut4 neuron ablation

Three days after DTA injection, we began to see changes in energy homeostasis concomitant with the onset of neuronal apoptosis. Glut4-neuron-ablated mice showed significant reductions of oxygen consumption VO_2 (Figure 2A) and respiratory quotient (RQ) during the dark phase of the light cycle (Figure 2C), indicating impaired energy utilization. In contrast, locomotion remained normal throughout the light cycle (Figure 2E). Food intake was severely curtailed during the dark phase (Figure 2G). The pronounced anorexia after Glut4 neuron ablation is expected to yield a negative energy balance.

It could be argued that any extensive ablation of basal hypothalamic neurons would impair eating as a result of tissue reaction, inflammation, and associated vascular changes. Therefore, as a control we performed neuronal ablations in mice carrying a Cre-inducible DTR in POMC neurons ($\text{Pomc-Cre; Rosa-iDTR}$), a known effector population of anorexigenic signals. As expected, POMC neuron ablation caused opposite effects to Glut4 neuron ablation. POMC neuron-ablated mice exhibited normal VO_2 (Figure 2B), increased RQ (Figure 2D), reduced locomotor activity during the dark phase (Figure 2F), but increased food intake throughout the light cycle (Figure 2H). The change in food intake is consistent with previous POMC ablation experiments (9), as well as with impaired melanocortin signaling (10).

Compared with POMC neurons, Glut4 neurons constitute a much larger population, and their ablation may cause significant inflammation. To examine the contribution of the inflammatory response to the observed phenotype, we measured hypothalamic expression of mRNA encoding the astrocyte marker, Gfap, as a marker of gliosis. Gfap was significantly elevated after Glut4 neuron ablation (Figure S1A). Next, we measured other markers of
inflammation, including interleukins and Toll-like receptors (Tlr). Levels of II-1, II-6, II-12, and Tnfα showed a trend toward increase in samples from Glut4-neuron-ablated mice, but were exceedingly low (i.e. Ct values between 33 and 39), raising the question of whether they are pathophysiologically significant (Figure S1B-E). In contrast, Tlr2 and Tlr4, whose Ct values were in the usual range (~25), were either unaltered or significantly reduced (Figure S1F-G). Therefore, the inflammatory response is mainly associated with gliosis.

To rule out that the observed changes of food intake were due to the acute gliosis, we followed mice for up to two months after ablation, and characterized the metabolic consequences of removing Glut4 neurons. The anorectic effect of Glut4 neuron ablation leveled off, but persisted. Throughout the light cycle, Glut4-neuron-ablated mice continued to show significantly lower cumulative food intake (Figure 3A). Quantitative analyses of the data showed a 23% reduction of food intake during the dark phase (Figure 3B). Interestingly, Glut4-neuron-ablated mice showed increased O₂ consumption (Figure 3C,D) and energy expenditure (Figure 3I,J), which were not observed immediately after ablation. RQ (Figure 3E,F) and locomotor activity (Figure 3G,H) were comparable with control mice. Overall, the negative energy balance phenotype persisted throughout the duration of the study. Therefore, we conclude that Glut4 neurons promote positive energy homeostasis by regulating food intake and energy expenditure.

Feeding behavior after Glut4 or POMC neuron ablation

We further characterized the response to fasting and refeeding in Glut4-neuron- or POMC-neuron-ablated mice. Glut4-neuron-ablated mice had 50% lower locomotion during fast, indicating reduced foraging (Figure 4A). They showed lower rebound food intake (Figure
4B). To test whether Glut4-neuron-ablated mice had defective responses to orexigenic neuropeptides, we administered intracerebroventricular NPY before and after Glut4 neuron ablation, and found identical responses (Figure 4C), indicating that animals can still respond to orexigenic cues. In contrast to the anorexigenic effect observed in Glut4-neuron-ablated mice, mice with POMC neuron ablation displayed hyperphagia (Figure 4D), and increased body weight (Figure 4E).

Glut4 neuron ablation causes persistent negative energy balance, while POMC neuron ablation causes positive energy balance. As a result, two months after neuronal ablation, Glut4-neuron-ablated mice showed a 26% decrease in body weight (Figure 4F), while POMC-neuron-ablated mice showed a 60% increase (Figure 4H). The changes in body weight reflected changes in adiposity, as Glut4-neuron-ablated mice showed a 3.6-fold decrease of epididymal fat weight (Figure 4G), while POMC neuron-ablated mice showed a 3.5-fold increase (Figure 4I). Moreover, we assayed energy balance in a diet-induced obesity model, in which mice were fed high fat diet (HFD) to induce weight gain. Normal chow diet (NCD)-fed mice were injected with DTA and switched to HFD on day 0 (Figure 4J). Although feeding on a more calorie dense diet blunted the weight loss in Glut4-neuron-ablated mice (Figure 4J ablated HFD vs. ablated NCD), these mice still failed to gain weight compared with controls on HFD (Figure 4J control HFD vs. ablated HFD). Therefore, we conclude that Glut4 neurons are orexigenic neurons that promote feeding.

CNS mechanisms of the anorexigenic effects of Glut4 neuron ablation

We considered different possibilities to explain the remarkable anorexia associated with Glut4 neuron ablation. First, we evaluated arcuate nucleus (ARH) neuropeptides. We assessed the
extent to which Glut4 neurons overlap with AgRP/NPY (henceforth, NPY) or POMC neurons. We generated Glut4-Cre; Rosa26-tomato; Npy-Gfp mice, and Glut4-Cre; Rosa26-tomato; Pomc-Gfp mice (Figure S2A). In both strains, Glut4 neurons are labeled red, whereas NPY or POMC neurons are labeled green. Quantitative analyses showed limited overlap of Glut4 neurons with either NPY (~17%) or POMC neurons (~13%) (Figure S2B). We also quantified the percentage of NPY- or POMC-positive hypothalamic Glut4 neurons by flow cytometry (Figures S2C-F, upper right quadrants). In the absence of Glut4-Cre, we detected no Tomato signal in NPY (Figure S2C) or POMC neurons (Figure S2E). When Tomato expression was activated by Glut4-Cre, ~18% of NPY neurons (Figure S2D) and ~23% of POMC neurons in the mediobasal hypothalamus (Figure S2F) were Glut4-positive.

We measured Npy/Agrp and Pomc mRNA in Glut4-neuron-ablated mice, but found only a non-significant trend toward increased Agrp/Npy (Figure S2G), consistent with the limited co-localization. Therefore, the anorexigenic phenotype observed in Glut4-neuron-ablated mice was not due to defects in NPY/AgRP and POMC neurons. Curiously, this neuropeptide expression pattern mirrors that seen after ablating orexigenic RipHER neurons (11), thereby providing further evidence that Glut4 neurons are orexigenic in nature.

Next, we examined other hypothalamic regions that control food intake and energy balance. The lateral hypothalamus (LH) regulates food intake and glucose metabolism (12). Melanin-concentrating hormone (MCH) is a potent orexin that is produced from Pmch synthesized by LH neurons and acts through Mchr1/r2 receptors (13). Following toxin-mediated ablation of MCH neurons, mice become hypophagic, lean (14), and hyperactive (15). Using MCH immunohistochemistry in Glut4-Cre; Rosa-Gfp mice, we found that Glut4 and MCH co-localize in the LH (Figure 5A). Moreover, immunohistochemistry demonstrated
a sizable decrease in number and intensity of Glut4 staining following toxin-mediated ablation (Figure 5B), indicating potential defects in the MCH system. In fact, $Pmch$ expression was significantly reduced in hypothalamic samples after ablation (Figure 5C). Thus, hypothalamic Glut4 neuron ablation affects MCH neuron number and decreases $Pmch$ levels, providing a potential explanation for the hypophagia.

Recent work has implicated GABAergic transmission in orexigenic signaling (16). Transcriptome analyses showed that GABAergic signaling elements are enriched in Glut4 neurons (17). Following Glut4 neuron ablation, key genes required for GABAergic signaling, such as $\text{glutamate decarboxylase 1 (Gad1)}, \text{GABA-A receptor } \gamma 1 (\text{Gabrg1})$, and $\text{GABA vesicular transporter member 1 (vGat)}$ were decreased (Figure 5D), consistent with the possibility that GABAergic activity is reduced. To test the hypothesis that decreased GABAergic signaling underlies hypophagia, we infused the GABA receptor agonist, bretazenil, into the mediobasal hypothalamus after Glut4 neuron ablation. Before ablation, all treatment groups showed comparable food intake (data not shown). After ablation, the control group, regardless of whether they received saline or bretazenil, ate comparably to pre-ablation. As expected, Glut4-neuron-ablated mice treated with saline had significantly reduced food intake (Figure 5E). In contrast, the Glut4-neuron-ablated group that received bretazenil partly recovered food intake, even though it was not normalized to pre-ablation levels. Saline or bretazenil infusion was continued for 14 days. Bretazenil infusion attenuated the weight loss caused by Glut4 neuron ablation (Figure 5F).

Altered glucose homeostasis after Glut4 neuron ablation
Insulin signaling in the CNS affects systemic insulin sensitivity and glucose metabolism (18). We tested whether ablating Glut4 neurons alters peripheral metabolism. Glut4-neuron-ablated mice had significantly elevated fasting glucose, and normal ad libitum glucose (Figures 6A, S3A, and S3C). This is in contrast with elevated ad libitum and fasting glucose in POMC neuron-ablated mice (Figures S3B and S3D). Glut4-neuron-ablated mice had comparable glucagon levels (Figure 6B), but significantly reduced insulin during fasting and refeeding (Figure 6C). These findings suggest that the hyperglycemia results from insufficient insulin levels. Immunohistochemical and morphometric studies indicated that β- and α-cell distribution and mass were normal in Glut4-neuron-ablated mice (Figure S3E), suggesting that the reduced plasma insulin is likely to reflect insufficient insulin secretion rather than decreased cell number.

Ablating Glut4 neurons impaired glucose tolerance (Figure 6D,E), and increased plasma glucose levels during pyruvate tolerance tests (Figure 6F,G). As the complexity of the manipulations required for neuronal ablation prevented us from subjecting mice to clamps, we examined liver gene expression for surrogate markers of hepatic insulin resistance. After an overnight fast, glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase 1 (Pck1) increased by 2.4- and 1.8-fold, respectively (Figure 6H). After refeeding, Glut4-neuron-ablated mice showed a 4.3-fold increase of hepatic G6pc (Figure 6I), but comparable Pck1 expression (data not shown). Pyruvate dehydrogenase kinase 4 (Pdk4) controls the activity of pyruvate dehydrogenase in an insulin-inhibitable manner, limiting conversion of pyruvate to acetyl-CoA. Glut4-neuron-ablated mice had significantly increased hepatic Pdk4 expression after refeeding, consistent with reduced plasma insulin levels (Figure 6I). Curiously, expression of Sterol regulatory element-binding protein (Srebp1c) was nearly
fourfold higher under refed, but not fasted conditions (Figures 6H,I), and was associated with increased hepatic triglyceride content in Glut4-neuron-ablated mice (Figure 6J). The increased hepatic lipid content in Glut4-neuron-ablated mice may be caused by increased de novo lipogenesis through Srebp1c and/or increased lipolysis from adipose tissue, due to lower insulin levels.

Glut4 neurons project to the PVN and DMV

To understand the mechanism of defective pancreatic endocrine function in Glut4-ablated mice, we sought to determine their efferent pathways using neuron-tracing studies. We injected adenoviral Ad-iZ-EGfpf in the basal hypothalamus of Glut4-Cre mice. This virus allows for Cre-dependent expression of membrane-tethered, farnesylated Gfp (19). We traced Gfp-labeled projections to two main sites, the vagal dorsal motor nucleus (DMV) in the hindbrain, and the hypothalamic paraventricular nucleus (PVN) (Figure 7A). DMV is critical for the regulation of pancreatic secretion, as well as sympathetic and parasympathetic afferents (20; 21). Thus, Glut4 neuron ablation causes reduced insulin secretion via impaired vagal efferent to the pancreas. Moreover, we examined c-fos expression as readout of neuronal activation after Glut4 neuron ablation. C-fos immunoreactivity localized to the PVN, dorsomedial hypothalamus (DMH), and–most prominently–anterior paraventricular thalamic nucleus (PVA) (Figure 7B). PVN and DMH relay feeding and metabolic cues from the ARH (11; 22; 23). The findings are consistent with the possibility that Glut4 neurons are integrated with critical hypothalamic nuclei that regulate food intake and hindbrain nuclei that regulate insulin secretion.
Impaired hypothalamic insulin signaling after Glut4 neuron ablation

The changes in energy homeostasis and peripheral metabolism following Glut4 neuron ablation suggest that Glut4 neurons mediate CNS actions of metabolic hormones. To test this hypothesis, we explored hormone signaling following Glut4 neuron ablation. First, we measured phospho-Akt after acute ablation to correlate metabolic phenotypes (Fig 2) with insulin pathway. Western blots showed that pAkt increased in the hypothalamus of Glut4-neuron-ablated mice after fasting (Fig S4A) and refeeding (Fig S4B). The increased pAkt in mice with Glut4 neuron ablation could represent an acute response to inflammation. We did immunohistochemistry to colocalize pAkt and Gfap (Fig S4C). We found that increased pAkt could only be partially attributed to glial cells (Gfap-positive cells). The acute increase of pAkt in other cells of Glut4-neuron-ablated mice may be a result of compensation or loss of inhibitory tone from Glut4 neurons.

Next, we measured hypothalamic pAkt two months after ablation. We found that pAkt immunoreactivity decreased in the basal hypothalamus of Glut4-neuron-ablated mice compared with WT (Figure 8A, left panels), indicating impaired insulin signaling. Leptin signaling—assessed from the number of pStat3-immunoreactive cells (Figure 8A and 8B) as well as their individual intensity (Figure 8C)—increased in the basal hypothalamus of Glut4-neuron-ablated mice, despite a significant decrease of fasting and fed plasma leptin (Figure 8D). Glut4-neuron-ablated mice have lower body weight and less adiposity, which can be associated with reduced circulating leptin. However, the change of body weight exceeds the reduction of leptin. Therefore, reduced leptin cannot be only attributed to the reduced body weight, but rather indicate that Glut4-neuron-ablated mice are more leptin–sensitive.
We also used phospho-ribosomal protein S6 (pS6) to assess mTOR signaling. We found that generation of pS6 in response to feeding in the hypothalamus of Glut4-neuron-ablated mice was comparable to controls (Figure 8A, right panels). Based on these results, we conclude that disrupting basal hypothalamic Glut4 neurons impairs insulin signaling, but increases leptin signaling and sensitivity.
DISCUSSION

In this study, we sought to define the metabolic functions of basal hypothalamic Glut4 neurons by targeted cell ablation and metabolic phenotyping in adult mice. Combined evidence from these investigations is consistent with a role of this cell population in food intake and glucose metabolism. Key findings of this work are that basal hypothalamic Glut4 neurons regulate satiety and glucose homeostasis: i) Glut4 neurons regulate energy homeostasis by promoting food intake and reducing energy expenditure; ii) Glut4 neurons regulate hepatic glucose and lipid metabolism; iii) Glut4 neurons regulate insulin secretion and β-cell function, possibly via direct projection to hindbrain. When viewed in the context of previous studies with GIRKO mice (4), the impairment of pAkt immunoreactivity in the present study supports the conclusion that ablating Glut4 neurons causes a defect in the insulin signaling pathway. Qualitative and quantitative changes in pStat3 immunohistochemistry and decreases in plasma leptin levels after ablation indicate that Glut4 neurons normally dampen leptin signaling, emphasizing their integrative role in energy homeostasis. Increased leptin signaling in Glut4-neuron-ablated mice may represent a compensatory response to reduced insulin signaling, consistent with the notion that leptin administration can rescue insulin-deficient diabetes (24). The findings expand our understanding of the neuroanatomy and cellular physiology of insulin action in the CNS and integrate the latter into the broader picture of diabetes pathogenesis.

Glut4 neuronal ablation and inflammation
We detected increased gliosis shortly after Glut4 neuron ablation. Yet, we think that this is unlikely a cause of anorexia. First, the role of inflammation on food intake is complex. Lipopolysaccharide-induced inflammation stimulates the release of cytokines and promotes anorexia (25). On the other hand, increased caloric intake associated with high fat diet is also associated with hypothalamic inflammation (26). Second, the negative energy balance following Glut4 neuron ablation persisted or two months after DTA injection, as did all the energy balance phenotypes examined in our study. Third, the acute changes in hypothalamic phospho-Akt content are consistent with an anti-inflammatory response. Fourth, Glut4-neuron-ablated mice show reduced weight gain on HFD, which is consistent with negative energy balance.

Glut 4 neurons and food intake

The anorectic phenotype linked to Glut4 neuron ablation in the hypothalamus is striking. It bears more than a passing resemblance with that of mice lacking RipHER neurons, suggesting that the latter partly overlap with the former (11). With regard to the mechanism of this observation, we provide three clues: (i) Glut4 neurons project to PVN and DMH, two relay sites for feeding cues from the ARH (11; 22; 23); (ii) Glut4 neurons partly overlap with MCH neurons in the LH, and MCH neuron number and \(Pmch \) levels fall after Glut4 neuron ablation, potentially contributing to anorexia (28); (iii) finally, the anorexia can be rescued by GABA supplementation, consistent with an important role of glutamatergic input onto hypothalamic neurons to regulate eating (29-31), as well as with the reversal of starvation caused by NPY neuron ablation (32) by delivery of GABA-A receptor agonists to the hindbrain (16).
Notably, the effects of glutamate and GABA extend to the lateral hypothalamus (33). GABA can promote weight gain when released from leptin-inhibited neurons (34). Deleting synaptic release of GABA from RipHER neurons increases body weight by decreasing energy expenditure and brown adipose tissue thermogenesis, though not food intake (23). These findings provide more circumstantial evidence that Glut4 neurons feed into these neural circuits.

CNS regulation of islet function and liver metabolism

Another key finding of this study is that ablating Glut4 neurons increases hepatic glucose production and decreases insulin levels, suggesting that this neuron population integrates various aspects of metabolic physiology. These observations are consistent with the fact that GIRKO mice (lacking InsR in muscle, fat, and Glut4 neurons) develop diabetes with profound hepatic insulin resistance and β-cell dysfunction (4).

There is a functional link between CNS and pancreatic islet secretion (35). We found that Glut4 neurons are: (i) enriched in components of the \(K_{\text{ATP}} \) channel (17), a central regulator of pancreatic hormone release (36); and (ii) project to the vagal DMN, a critical relay station for the CNS-endocrine pancreas axis (37). The alterations of hepatic gene expression and lipid content in Glut4-neuron-ablated mice add to a growing body of evidence linking hypothalamic hormone and nutrient sensing to insulin sensitivity in the liver (38). Whether this process applies to larger mammals remains to be determined (39).

As the medical scientific community scrambles to find new approaches to treat insulin resistance—the fundamental abnormality of type 2 diabetes—the present findings add to a growing catalog of evidence suggesting that the CNS be considered a target organ of insulin
sensitizers. In this regard, the identification of a discrete—if heterogeneous—“insulin-sensitive” neuronal population represents a necessary step in developing treatments that meet appropriate standards of safety and efficacy.
ACKNOWLEDGEMENTS

We thank C. Rhodes (University of Chicago) and M.G. Myers (University of Michigan) for providing Ad-iZ-EGfpf adenovirus. We thank X. Xu and A.W. Ferrante (Columbia University) for critical discussion and technical help with assaying inflammation response. We thank members of the Accili laboratory for critical discussion of the data. Part of the study has been included in an abstract (oral presentation) at ADA’s 71st Scientific Sessions (June 2011, San Diego, CA).

AUTHORS’ CONTRIBUTIONS

H.R. designed and conducted experiments, analyzed data, and wrote the article; T.Y.L conducted experiments; T.E.M. provided research tools; and D.A. designed experiments, analyzed data, and wrote the manuscript.

CONFLICT OF INTEREST STATEMENT

We have no conflict of interest to disclose.

FUNDING SOURCES

H.R. is the recipient of a Mentor-based post-doctoral fellowship from the American Diabetes Association, of the Naomi Berrie Diabetes Research Fellowship. This work is supported by NIH grants K99DK098294 (HR), 5R37DK058282 (DA) and DK63608 (Columbia University Diabetes Research Center).

GUARANTOR INFORMATION
Dr. Domenico Accili is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
REFERENCES

1. Kaiyala KJ, Schwartz MW: Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 2011;60:17-23

32. Luquet S, Perez FA, Hnasko TS, Palmiter RD: NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 2005;310:683-685

34. Xu Y, O'Brien WG, 3rd, Lee CC, Myers MG, Jr., Tong Q: Role of GABA release from leptin receptor-expressing neurons in body weight regulation. Endocrinology 2012;153:2223-2233

FIGURE LEGENDS

Figure 1 Basal hypothalamic Glut4 neuron ablation

(A) Basal hypothalamic Glut4 neuron ablation. TUNEL staining of hypothalamus and hippocampus obtained 48-hr after DTA injection. Left panels: merged TUNEL and DAPI staining; middle panels: TUNEL staining; right panels: DAPI staining. (B) Representative images of Glut4 immunohistochemistry in control and Glut4-neuron-ablated mice 2 months after DTA injection.

Figure 2 Energy balance 3-days following Glut4 neuron or POMC neuron ablation

(A-B) Representative continuous 24-hr recordings (left), and quantification (right) of VO$_2$ during the light and dark phases of the light cycle in Glut4-neuron-ablated (A) or POMC neuron-ablated (B) vs. control mice. (C-D) Representative continuous 24-hr recordings of respiratory quotient (RQ) (left) and quantification (right) in Glut4-neuron-ablated (C) or POMC neuron-ablated mice (D) vs. controls. (E-F) Representative continuous 24-hr recordings of locomotor activity (left) and quantification (right) in Glut4-neuron-ablated (C) or POMC neuron-ablated mice (D) vs. controls. (G-H) Representative continued 24-hr recordings of food intake (left) and quantification (right) in Glut4-neuron-ablated (G) or POMC neuron-ablated mice (H) vs. controls. Data show means ± SEM (n=8) (*= p<0.05, **= p<0.01, ***= p<0.001).

Figure 3 Energy balance two months following Glut4 neuron ablation
(A-B) 24-hr recording (A) and quantification (B) of food intake. (C-D) 24-hr recording (C) and quantification (D) of VO$_2$. (E-F) 24-hr recording (E) and quantification (F) of respiratory exchange ratios. (G-H) 24-hr recording (G) and quantification (H) of total locomotor activity. (I-J) 24-hr recordings (I) and quantification (J) of total energy expenditure. Data show means ± SEM (n=6-8 per group) (*=p<0.05).

Figure 4 Feeding behavior after Glut4 or POMC neuron ablation

(A) Locomotor activity during an overnight fast. (B) Rebound food intake after an overnight fast. (C) Feeding response to intracerebroventricular NPY injection. (D) Daily food intake during the first four days following POMC neuron ablation. (E) Time course of body weight gain in mice with POMC neuron ablation and controls. (F-I) Comparison of body weight (F, H) and epydidymal fat pad weight (G, I) in mice with Glut4 neuron ablation vs. with POMC neuron ablation at the end of the experiment (2 months). (J) Body weight measurement after Glut4 neuron ablation on NCD or HFD. Data show means ± SEM (n=8) (*= p<0.05, **= p<0.01, ***= p<0.001).

Figure 5. Reduced MCH and GABAergic pathways after Glut4 neuron ablation

(A) Immunohistochemistry of MCH and Glut4-Cre-Gfp neuron reporter in the lateral hypothalamus. (B) Glut4 immunohistochemistry in the lateral hypothalamus after DTA-mediated ablation. (C) Reduced Pmch expression after Glut4 neuron ablation (fx, fornix). Data show means ± SEM (n=6) (**= p<0.01). (D) Expression of selected components of GABAergic signaling pathways in Glut4 neuron-ablated and control mice (n=8). (E) Food intake during the dark and light phases of the light cycle in control and Glut4 neuron-ablated
mice infused with saline or GABA agonist. (F) Time course analysis of mice receiving GABA or saline infusion after Glut4 neuron ablation (n=4-6). Data show means ± SEM (*= \(P<0.05 \); **= \(P<0.01 \); ***= \(P<0.001 \)).

Figure 6. Glucose metabolism in mice 2 months after Glut4 neuron ablation

(A) Blood glucose after overnight fast. (B) Plasma glucagon. (C) Fasting and refed plasma insulin levels. (D-E) Intraperitoneal glucose tolerance tests. (F-G) Intraperitoneal pyruvate tolerance tests. (H-I) Hepatic gluconeogenic and lipogenic gene expression during fasting and refeeding. (J) Hepatic lipid content in fed control and Glut4-neuron-ablated mice. Data show means ± SEM (n=8) (*= \(p<0.05 \), **= \(p<0.01 \)).

Figure 7. Neural circuit mapping of basal hypothalamic Glut4 neuron projections

(A) Representative EGfpf fluorescent images following stereotactic injection of iZ-EGfpf to map Glut4 neuron projections. (B) C-fos immunohistochemistry 48-hr after Glut4 neuron ablation.

Figure 8. Hormone signaling in the CNS of Glut4-neuron-ablated mice

(A) Immunohistochemical analysis of pAkt, pStat3, and pS6 in control and Glut4-neuron-ablated mice (2 months after ablation) 4-hr after refeeding. (B-C) Quantification of the number (B) and integrative density of individual pStat3-positive cells (IntDen) (C) in the ARH (n=4-5 for each group). (D) Plasma leptin levels in fasted and in refed Glut4-neuron-ablated mice (n=8). Data show means ± SEM (*= \(p<0.05 \), ***= \(p<0.001 \)).
Supplemental Figures

Figure S1 Inflammatory markers after acute Glut4 neuron ablation

Hypothalamic Gfap expression (A) normalized to βActin. Hypothalamic Il-1, Il-6, Il-12, Tnfa, Tlr2, Tlr4 expression (B-G) normalized to Gfap. AU, arbitrary unit. Data show means ± SEM (n=6-8 per group) (*= P<0.05; **= P<0.01, ***= P<0.001).

Figure S2 Overlap between Glut4 neurons, POMC neurons, and NPY neurons

(A) Detection of Glut4, NPY, and POMC neurons in the arcuate nucleus of adult mice using fluorescent reporter transgenes. NPY neurons (left panel) and POMC neurons (right panel) are labeled green with Npy-Gfp and Pomc-Gfp, respectively. Glut4 neurons are labeled red with Glut4-Cre; Rosa-tomato. 3V= third cerebral ventricle. (B) Quantification of the percentage of Glut4-positive NPY or POMC neurons by flow cytometry (n= 3-4 per group). (C-F) Representative flow cytometry results from Npy-Gfp (C), Npy-Gfp;Glut4-Cre;Rosa-tomato (D), Pomc-Gfp (E), or Pomc-Gfp;Glut4-Cre;Rosa-tomato mice (F). The percentage of Gfp and/or Tomato positive cells in each quadrant is indicated in the graph. (G) Neuropeptide mRNA expression. Data show means ± SEM (n=6 per group) (*= p<0.05).

Figure S3 Glucose levels in mice 2 months after Glut4 neuron or POMC neuron ablation

(A-B) Ad libitum-fed glucose levels. (C-D) Fasting glucose levels. (E) Insulin and glucagon immunohistochemistry. Data show means ± SEM (n=6-8 per group) (***= p<0.001).

Figure S4 Akt activation in the CNS after acute Glut4 neuron ablation
(A-B) Western blot analysis of Akt phosphorylation in the hypothalamus of control and Glut4-neuron-ablated mice after fasting (A) and refeeding (B). Quantified data are shown on the right. (C) Immunohistochemical analysis of pAkt and Gfap in the hypothalamus of control and Glut4-neuron-ablated mice 4-hr after refeeding.
Fig 1

88x166mm (300 x 300 DPI)
Fig 2
Figure 5
Fig 6

180x87mm (300 x 300 DPI)
Fig 7