Preserved Beta-Cell Function in Type 1 Diabetes by Mesenchymal Stromal Cells

Per-Ola Carlsson1,2, Erik Schwarcz3, Olle Korsgren4* and Katarina Le Blanc5*

1Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
2Department of Medical Sciences, Uppsala University, Sweden
3Department of Internal Medicine, Örebro University Hospital, Sweden
4Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
5Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden

*Last author; shared contribution

Running title: mesenchymal stem cells to treat type 1 diabetes

Address correspondence to:

Per-Ola Carlsson, MD, PhD

Department of Medical Cell Biology

Husargatan 3, Box 571

Uppsala University
SE-75123 Uppsala, Sweden
Phone: +46 18 471 4425
Fax: +46 18 471 4059
e-mail: Per-Ola.Carlsson@mcb.uu.se
ABSTRACT

The retention of endogenous insulin secretion in type 1 diabetes is an attractive clinical goal, which opens possibilities for long-term restoration of glucose metabolism. Mesenchymal stromal cells (MSCs) constitute, based on animal studies, a promising interventional strategy for the disease. This prospective clinical study describes the translation of this cellular intervention strategy to patients with recent onset type 1 diabetes. Twenty adult patients with newly diagnosed type 1 diabetes were enrolled and randomized to MSC treatment or to the control group. Residual beta-cell function was analyzed as C-peptide concentrations in blood in response to a mixed meal tolerance test (MMTT) at one-year follow-up. In contrast to the patients in the control arm, who showed loss in both C-peptide peak values and C-peptide when calculated as area under the curve during the first year, these responses were preserved or even increased in the MSC-treated patients. Importantly, no side effects of MSC treatment were observed. We conclude that autologous MSC treatment in new onset type 1 diabetes constitute a safe and promising strategy to intervene in disease progression and preserve beta-cell function.

Trial registration. ClinicalTrials.gov: NCT01068951

Keywords: Mesenchymal stromal cells, type 1 diabetes, beta-cell preservation
Despite intensive research, tested treatments have this far at best only temporarily arrested the progressive loss of beta-cells in type 1 diabetes (1). Retention of endogenous insulin secretion is an attractive goal, since it causes better glycemic control (2), and decreases the risk of microvascular complications and severe hypo- or hyperglycemia episodes (3; 4).

Mesenchymal stromal cells (MSCs) are rare non-hematopoetic cells in the bone marrow that produce matrix proteins, and contribute to tissue regeneration and repair (5). MSCs also have unique immunomodulatory capacities (6). They can suppress T-cell proliferation in response to nominal antigens or alloantigens (7), and upregulate the number of regulatory T-cells (8; 9). MSC-mediated immunosuppression is also associated with a reduction in inflammatory cytokine production (10). Several factors have been implied to mediate immunomodulation, including transforming growth factor-beta, hepatocyte growth factor, prostaglandin-E2, interleukin-10, indoleamine-2,3-dioxygenase (11), nitric oxide (12), heme-oxygenase-1(13), and matrix metalloproteinases-2 and -9 (14).

MSCs can be expanded \textit{ex vivo}, and have in a number of studies in animal models of type 1 diabetes been forwarded as an attractive therapy to ameliorate or reverse manifest diabetes (15-17). Besides having systemic immunomodulatory properties, the MSCs have been observed to specifically home to the damaged islets and to local pancreatic lymph nodes. MSCs show distinct efficacy in graft-versus-host disease (GvHD) patients (18; 19) with no, or only minor, side effects. Importantly, no increased risk of tumor development in patients is known, and no ectopic tissue formation has been observed (20; 21).

The present study aimed to evaluate the safety and efficacy of autologous MSCs in treatment of patients recently diagnosed with type 1 diabetes.

\textbf{RESEARCH DESIGN AND METHODS}
Patient selection. Patients newly diagnosed with type 1 diabetes at Uppsala University Hospital or neighbouring admitting hospitals, were enrolled according to the pre-set criteria: 18-40 years of age with type 1 diabetes diagnosed <3 weeks before enrolment, and with a stimulated C-peptide level >0.1 nmol/l. None of the patients were allowed to be pregnant, have BMI>30, have tested positive for HIV, viral hepatitis B or C, or Treponema Pallidum, be immune-suppressed, or have known or previous malignancy. All participants were given oral and written information about the study and signed a written consent prior to inclusion to the study. The study was approved by the Uppsala ethical board, and the reported investigations were carried out in accordance with the principles of the Declaration of Helsinki as revised in 2000.

Study design. The study was an open single-center randomized pilot study at Uppsala University Hospital to evaluate the safety using autologous MSCs in treatment of recently diagnosed type 1 diabetes. Patients meeting the inclusion criteria were randomized in equal numbers (10 in each group for either MSC treatment or only insulin treatment). As secondary end points, treatment efficacy was evaluated and assessments included maintained fasting C-peptide and evoked C-peptide response to a mixed meal tolerance test (MMTT), blood glucose control by HbA1c, changes in insulin doses/kg, and changes in levels of autoantibodies to beta-cells (GAD65 and IA2 antibodies). Study end points were evaluated at 10 weeks after diagnosis and at the one-year follow-up.

Randomization and masking. Randomization without any blocking restriction was performed by the selection of one of 20 identical envelopes containing a unique identification number and group assignment by third party member. No masking was performed. All patients received intensive insulin therapy (i.e. ≥four injections per day) with insulin aspart and insulin detemir on the basis of patient-measured blood glucose levels, as well as by continuous glucose monitoring (CGM) performed on two occasions during the year. Target levels of
plasma glucose were between 5-8 mmol/l, and HbA1c had a target level of less than 7.0% (53 mmol/mol). The database was maintained at Uppsala University Hospital, and measurements of C-peptide, HbA1c, GAD65, and IA2 antibodies were performed at Uppsala University Hospital central laboratory.

MSC treatment. Within three weeks of randomization, bone marrow was aspirated from the iliac crest of the participants in the MSC group. Clinical-grade MSCs were then generated under good manufacturing practice conditions as accredited by the Swedish National Board of Health and Welfare in growth media supplemented with lysed human platelets (final concentration 10^8/ml) (19). MSCs expressed (>95%) CD73, CD90, CD105, and HLA-ABC, and were negative (<5%) for CD14, CD31, CD34, CD45, and HLA-DR (Supplemental Figure 1). All cells were harvested in passage 1-2, and cryopreserved before infusion. MSC release criteria for clinical use included: spindle shape morphology, absence of contamination by pathogens and viability >95%. 2.1-3.6 x 10^6 autologous cells/kg (median 2.75 x 10^6 cells/kg) were given, 3-4 weeks after bone marrow harvest, as one single intravenous 20 min infusion without premedication.

Safety tests. At each outpatient visit, patients in both study groups underwent history taking to monitor for adverse events. Specific emphasis was put on increased tendency for infections, development of malignancy or other disease, as well as hypo- or hyperglycemic events. During hospitalization, additional physical examinations and blood analyses were performed.

Efficacy tests. Residual beta-cell function was analyzed as C-peptide concentrations in blood in response to an MMTT (6 ml/kg, maximal dose of 360 ml; Resource Protein, Novartis) at an early time point after diagnosis (10 weeks) and at the one year follow-up. No concomitant insulin was given at time of testing. In order to avoid potential influence also of their insulin detemir, this was avoided the night before testing in all patients. Instead, the patients were
admitted to the diabetes ward and received a combined intravenous glucose rapid-acting insulin infusion, keeping plasma glucose levels between 3.9 and 6.3 mmol/l until the performance of MMTT in the morning. Plasma samples for C-peptide measurements were obtained at 0, 15, 30, 60, 90 and 120 min after meal intake and analyzed with the use of a Roche Modular E & cobas e601 (Roche) at Uppsala University Hospital. In addition to the pre-set criteria of analysis of peak C-peptide value, the repeated measurements allowed calculations of Area under the Curve (AUC). Also, daily insulin doses/kg and HbA1c levels were recorded.

Immunological monitoring. GAD65 and IA2 antibodies were analyzed at diagnosis, 10 weeks after diagnosis, and at the one year follow-up.

Statistics. An unpaired two-tailed t-test was used to compare differences between two groups of parametric data, whereas Wilcoxon’s rank sum test was used for nonparametric data. All values are given as mean±SEM. P-values <0.05 were considered statistically significant.

RESULTS

Characteristics of the patients. 26 patients newly diagnosed with type 1 diabetes between April 2010 and May 2012 provided interest for the study and fulfilled screening criteria (Supplemental Figure 2). Four of these declined to participate before randomization, whereas the remaining 22 were randomized. Two of these declined after randomization due to assignment to the control group, and these two participants were therefore substituted in the randomization. Two of the in total 20 patients in the study (one in the MSC group and one in the control group) withdrew during the one year study period. The patients that withdrew stated lack of time (the subject in the MSC group moved) and motivation. Most patients
interested in participating in the study were males. The participants did not differ in age, weight, BMI, or clinical or laboratory parameters (Table 1).

Adverse events: All patients (n=10) randomized to autologous treatment with MSCs, tolerated the procedure well. No side effects were observed. During the first year, no tumors, or chronic infections have been diagnosed in any of the study patients. Neither did any of the patients report infections requiring antibiotics treatment. Several of the patients have had episodes of viral upper respiratory tract infections, but with similar frequency in both study groups. One of the patients in the control group has been diagnosed with microscopic colitis and Horton’s headache. None of the study patients have had any episode of either hyperglycemic ketoacidosis or assisted hypoglycemia.

Efficacy evaluation: In order to avoid effects of glucose toxicity and beta-cell exhaustion, the first MMTT was performed 10 weeks after the start of insulin treatment. At this time point, there were no differences in HbA1c, insulin doses/kg, fasting C-peptide or MMTT-evoked C-peptide response (Table 2). Similarly, at the one year follow-up, the study groups did not differ in these parameters. Changes during the first year in C-peptide response to an MMTT were evaluated as primary efficacy end point. In response to the MMTT, patients in the control arm had a mean decrease in both C-peptide peak values and C-peptide when calculated as AUC during the first year. In contrast, these responses were preserved in MSC-treated patients (Figure 1). For individual subjects in the control group, 8 out of 9 patients decreased in peak C-peptide, and 7 out of 9 decreased in AUC response to the MMTT during this first year (Figure 2). Notably, only 3 of the 9 MSC-treated patients decreased their peak C-peptide or AUC response to the MMTT during the same period. There were no changes in frequency of GAD65 or IA2 antibodies between control and MSC-treated patients. During the year, two patients in the control arm, and one in the MSC group, lost GAD65 antibodies. No seroconversion for presence of IA2 antibodies occurred at all.
DISCUSSION

This is the first study to report on the possibility to intervene in the course of type 1 diabetes by systemic MSC treatment. During the first year, we observed preserved or even increased C-peptide response to an MMTT in MSC-treated patients.

Similar to what has been reported in interventional studies with MSCs for other diagnosis, e.g. GvHD (19), Crohn’s disease, and multiple sclerosis, we observed no adverse events.

Composite type 1 diabetes TrialNet data indicate a mean 15% decrease in the AUC response to an MMTT during the first year in 21-46 year old patients, and 24% in 15-21 year old patients (22). In our study, a mean 13% decrease in the AUC response to an MMTT was observed during the first year in patients randomized to the control group. In contrast, most patients randomized to MSC treatment increased their capacity for C-peptide response to the MMTT during the study period, with increased delta-values for both peak C-peptide response and AUC C-peptide response to the MMTT, when compared to the control group. There were more females in the control group, which partially reflected the open design of study, where two male patients randomized to control group declined after assignment and subsequently were substituted by chance by two female patients. However, no influence of sex on loss of C-peptide has been reported in larger studies (22; 23). Moreover, although the male predominance in the MSC-group caused a tendency for these patients to weigh more, there were no differences in BMI or insulin doses/kg between the groups.

MSCs can not only be harvested from bone marrow, as in this study, but also from several other organs. Moreover, culture and expansion protocols vary, as well as the use of allogeneic or autologous cells. All these factors may affect the cell characteristics. We chose autologous MSC therapy to avoid any potential risk of HLA immunization, or transfer of donor-derived
infections or other diseases. In our previous studies of GvHD after hematopoietic stem cell transplantation, the one-year survival rate of patients was substantially higher in patients receiving MSCs harvested in early passages (passage 1-2) compared to later passages (passage 3-4) (20). Short-term expanded MSCs, as in the autologous setting, also elicit less innate immune attack when infused systemically, which supports their survival and function in vivo (24). There are reports of diabetes-induced changes in MSCs, including their regenerative potential, but these seem to mainly reflect effects of long-term hyperglycemia by e.g. advanced glycation end products (25). In this study, we observed no defects in the expansion potential of MSCs after autologous harvest in subjects with recent onset type 1 diabetes.

Results presented show that autologous MSC treatment of new onset type 1 diabetes may be a safe and feasible strategy to intervene in the disease process and preserve beta-cell function. These encouraging results call for larger, randomized and double-blinded studies, with a longer duration of follow-up, to validate the findings obtained.

ACKNOWLEDGEMENTS

P-O.C., O.K. and K.L.B. conceived and designed the study, and participated in the analysis and interpretation of the data. P-O.C., E.S. and K.L.B. conducted the study. P-O.C. drafted the manuscript, and the other authors revised it critically for intellectual content. All authors approved the final version of this manuscript. P-O.C. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. None of the authors have any duality of interest associated with this manuscript. We thank the Swedish Research Council (K2013-55X-15043, K2011-65X-12219-15-6), AFA Insurance, EXODIAB, the Swedish Diabetes Association, the
Swedish Juvenile Diabetes Foundation, the Novo Nordisk Foundation, and Diabetes Wellness Sverige for academic grants to support this work. We also like to thank participants, research technicians and nurses involved in the study.
REFERENCES

Table 1. Characteristics of the patients at diagnosis.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Control (n=9)</th>
<th>MSC-treated (n=9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male/female)</td>
<td>5/4</td>
<td>8/1</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>27±2</td>
<td>24±2</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>68±4</td>
<td>78±3</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>22.5±0.9</td>
<td>23.3±1.1</td>
</tr>
<tr>
<td>GAD65 antibodies (no. of all)</td>
<td>8/9</td>
<td>6/9</td>
</tr>
<tr>
<td>IA2 antibodies (no. of all)</td>
<td>4/9</td>
<td>6/9</td>
</tr>
<tr>
<td>Both GAD65 and IA2 antibodies (no. of all)</td>
<td>4/9</td>
<td>3/9</td>
</tr>
<tr>
<td>Diabetes-associated HLA alleles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR4 (no. of all)</td>
<td>8/9</td>
<td>7/9</td>
</tr>
<tr>
<td>DR3 (no. of all)</td>
<td>0/9</td>
<td>0/9</td>
</tr>
<tr>
<td>Neither DR3 nor DR4 (no. of all)</td>
<td>1/9</td>
<td>2/9</td>
</tr>
<tr>
<td>DQ8 (no. of all)</td>
<td>9/9</td>
<td>7/9</td>
</tr>
<tr>
<td>DQ2 (no. of all)</td>
<td>4/9</td>
<td>4/9</td>
</tr>
<tr>
<td>DQ2/8 (no. of all)</td>
<td>3/9</td>
<td>2/9</td>
</tr>
<tr>
<td>Neither DQ2 nor DQ8 (no. of all)</td>
<td>0/9</td>
<td>0/9</td>
</tr>
<tr>
<td>DR4-DQ8 (no. of all)</td>
<td>8/9</td>
<td>7/9</td>
</tr>
<tr>
<td>Diabetic ketoacidosis (no. of all)</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>Polyuria and weight loss (no. of all)</td>
<td>8/9</td>
<td>9/9</td>
</tr>
</tbody>
</table>

Plus-minus values are means±SEM. There were no statistically significant differences between the two groups. Concentrations of GAD65 and IA2 antibodies were determined by ELISA technique, where values of GAD IgG ≥5U/ml and IA2 IgG ≥8kU/l indicated their presence. HLA class II alleles were measured with PCR amplification and sequence-specific hybridisation.
Table 2. Comparison in functional parameters between the two groups at 10 weeks after diagnosis and at one year follow up.

<table>
<thead>
<tr>
<th>Functional parameter</th>
<th>10 weeks control</th>
<th>10 weeks MSC-treated</th>
<th>1 year control</th>
<th>1 year MSC-treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (% and (mmol/mol))</td>
<td>6.9±0.4 (52±4)</td>
<td>6.5±0.4 (48±4)</td>
<td>6.6±0.2 (49±2)</td>
<td>6.3±0.2 (46±2)</td>
</tr>
<tr>
<td>Insulin dose (IU/kg/day)</td>
<td>0.39±0.13</td>
<td>0.43±0.05</td>
<td>0.37±0.07</td>
<td>0.39±0.05</td>
</tr>
<tr>
<td>Fasting C-peptide (nmol/l)</td>
<td>0.28±0.02</td>
<td>0.29±0.05</td>
<td>0.29±0.04</td>
<td>0.32±0.05</td>
</tr>
</tbody>
</table>

All values are given as means±SEM for 9 patients in each group. There were no statistically significant differences between the groups.
LEGENDS TO FIGURES

Figure 1. Changes in C-peptide response to a mixed meal tolerance test (MMTT) between 10 weeks after diagnosis and the one year follow-up for control (closed bars) and mesenchymal stromal cell (MSC)-treated type-1 diabetes patients (open bars). Absolute (A) and per cent (B) changes in peak C-peptide concentrations between the loads. Absolute (C) and per cent (D) changes in the Area under the Curve (AUC) response of C-peptide concentrations between the loads. All values are expressed as means±SEM for 9 individuals in each group. * denotes P<0.05 when compared to control group. Comparisons were made using Student’s unpaired t-test.

Figure 2. C-peptide response to a mixed meal tolerance test (MMTT) at 10 weeks after diagnosis and at the one year follow-up for control (closed bars) and mesenchymal stromal cell (MSC)-treated type-1 diabetes patients (open bars). Peak C-peptide concentrations for all individuals in control (A) and MSC- treated group (B). Area under the Curve (AUC) response of C-peptide concentrations for the same individuals in control (C) and MSC- treated group (D).

Supplemental Figure 1. Representative fluorescence-activated cell sorting data obtained in the characterization of cells classified as mesenchymal stromal cells (MSCs).

Supplemental Figure 2. Flow diagram of patients in the trial. MSC denotes mesenchymal stromal cells.
Figure 1
167x124mm (300 x 300 DPI)
Figure 2
180x140mm (300 x 300 DPI)
Counts

0 20 40 60 80 100

grey=isotype
black line=marker

CD73

CD90

CD105

HLA-ABC

CD14

CD31

CD34

HLA-DR

CD45
26 patients assessed for eligibility

4 patients declined to participate

22 patients randomized

2 patients withdrew directly after assignment to control group

Control arm (n=10)

MSC arm (n=10)

1 patient withdrew due to lack of motivation

1 year follow-up

Control arm (n=9)

MSC arm (n=9)

1 patient withdrew due to lack of time after moving from Uppsala