Unacylated ghrelin (UnAG) induces oxidative stress resistance in a glucose intolerance mouse model and peripheral artery disease by restoring endothelial cell miR-126 expression.

Gabriele Togliatto¹, Antonella Trombetta¹, Patrizia Dentelli¹, Sara Gallo¹, Arturo Rosso¹, Paolo Cotogni², Riccarda Granata¹, Rita Falcioni³, Thomas Delale⁴, Ezio Ghigo¹ and Maria Felice Brizzi¹

¹Department of Medical Sciences and ²Department of Anesthesiology and Intensive Care, University of Turin, Turin, Italy. ³Department of Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy. ⁴Alize Pharma, Ecully, France

Final words: 4000

Running Title: miR-126 in PAD and diabetes

Key words: ROS, superoxide-dismutase-2, vascular damage, miR-126, UnAG

Address correspondence to:

Maria Felice Brizzi, Department of Medical Sciences, University of Torino
Corso Dogliotti 14, 10126, Torino
mariafelice.brizzi@unito.it

Rita Falcioni, Department of Experimental Oncology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
falcioni@ifo.it
ABSTRACT

Reactive oxygen species (ROS) are crucial in long-term diabetes complications, including peripheral artery disease (PAD). In this study, we have investigated the potential clinical impact of unacylated ghrelin (UnAG) in a glucose intolerance and PAD mouse model. We demonstrate that UnAG is able to protect skeletal muscle and endothelial cells (ECs) from ROS imbalance in hind limb ischemia subjected ob/ob mice. This effect translates into reductions in hind limb functional impairment. We show that UnAG rescues sirtuin 1 (SIRT1) activity and superoxide-dismutase-2 (SOD-2) expression in ECs. This leads to SIRT1-mediated p53 and histone 3 (H3K56) deacetylation and results in reduced EC senescence in vivo. We demonstrate, using siRNA technology, that SIRT1 is also crucial for SOD-2 expression. UnAG also renews miR-126 expression, resulting in the post-transcriptional regulation of vascular cell adhesion molecule 1 (VCAM-1) expression and a reduced number of infiltrating inflammatory cells in vivo. Loss-of-function experiments that target miR-126 demonstrate that miR-126 also controls SIRT1 and SOD-2 expression, thus confirming its role in driving UnAG-mediated EC protection against ROS imbalance. These results indicate that UnAG protects vessels from ROS imbalance in ob/ob mice by rescuing miR-126 expression thus emphasizing its potential clinical impact in avoiding limb loss in PAD.
INTRODUCTION

Peripheral arterial disease (PAD) is a widespread condition caused by the atherosclerosis of peripheral arteries, most commonly in the lower extremities (1). Both Type 1 and Type 2 diabetic mellitus (DM) patients display an increased risk of developing PAD (2,3). Moreover, individuals with diabetes develop PAD at an early age and greater PAD severity is commonly caused by impaired vascular remodeling (2,3). The persistence of an oxidative environment is crucial for symptom occurrence/recurrence in the diabetic setting (3). A defective mitochondrial electron transport chain (4), along with an increase in reactive oxygen species (ROS) levels are crucial determinants of tissue damage in PAD patients. This is particularly true in diabetes where endogenous antioxidant defense mechanisms are also impaired (3,5).

The role of glucose-mediated oxidative stress in vascular damage has been extensively documented and is considered to be the most relevant mechanism in what is known as “metabolic memory” (6-8). “Metabolic memory” refers to the long-term detrimental effects of hyperglycaemia, maintained even after glucose normalization. It mainly relies on changes in the epigenome (6-8) and involves histone modifying enzymes, DNA methylation, chromatin remodeling proteins and microRNAs (miRs) (6-8). Proof of concept for the role of impaired ROS clearance in hyperglycaemia-induced changes in the epigenome (9) can be found in the molecular approach-driven over-expression of superoxide-dismutase-2 (SOD-2), the primary enzymatic antioxidant defense against ROS production, which prevents the sugar-induced histone methylation of the NFκB subunit p65 (9). The transcriptional activation of NF-kB and the expression of its target genes, such as the vascular cell adhesion molecule 1 (VCAM-1), are some of the most relevant markers of epigenome modification in diabetes (9). In addition to the role of transcription factor NF-kB, posttranscriptional regulation, involving small noncoding micro-RNAs (miRs), is known to control VCAM-1 expression and inflammatory cell recruitment in developing atherosclerotic lesions and subsequent ischemia (10). Interestingly, the plasma miR profile of diabetic patients has
revealed that miR-126, one of miRs involved in the regulation of VCAM-1 expression (11), is reduced (12). This suggests that aberrant miR-126 regulation might also contribute to the long-lasting detrimental vascular effects of hyperglycaemia. Persistent down-regulation of class III histone deacetylase SIRT1 (13), in individuals suffering from diabetes has also recently been reported to contribute to mitochondrial superoxide accumulation, reduced scavenging enzyme activity, NF-κB activation, p53 and H3K56 acetylation as well as vascular dysfunction (8,13,14).

Surgical and endovascular treatment are currently considered to be the front-line in avoiding limb loss (15). However, restenosis is commonly found in up to 50% of patients with successful angioplasty (16). Moreover, alternative treatment options are still limited for PAD patients who are not eligible for surgery. Therapeutic angiogenesis has recently been proposed for these patients, but has failed to improve long-term patient outcomes (2). The failure to obtain a clinical response to current therapeutic options has spurred the development of alternative strategies which are mainly focused on improving anti-oxidant machinery. We have previously shown that the more abundant circulating form of ghrelin, desacyl-grelin (UnAG), exerts anti-oxidant effects on endothelial progenitor cells (EPCs) (17,18). A proof of concept is provided by UnAG administration which induces SOD-2 expression and improves mitochondrial dysfunction in muscles subjected to ischemia (19). UnAG is one of the ghrelin forms which is mainly produced in the stomach (20). UnAG differs from acylated ghrelin (AG) in term of its biological activity (17-19, 21). Moreover, while both AG and UnAG are released into circulation (22), their ratio (AG:UnAG) varies and ranges from 1:2 to 1:9 (23), while a relative excess of AG has interestingly been found in individuals suffering from insulin resistance connoted metabolic disorders (24). These observations, coupled with the role of glucose-mediated oxidative stress in vascular damage, have led us to investigate the clinical impact of UnAG administration on a mouse model of massive obesity, glucose intolerance and PAD.
RESEARCH DESIGN AND METHODS

Reagents: a detailed list of the reagents and antibodies used in this study is reported in Supplementary Table 1.

Murine hind limb ischemia model. Male C57BL/6J ob/ob mice (8 weeks-old) (Charles River Laboratories International Inc., Wilmington, MA, USA) were anesthetized on day 0 and unilateral hind limb ischemia was induced as described in (25). The normo-perfused contra-lateral limb of each mouse was used as an internal control. After hind limb ischemia, animals were treated daily with intra-peritoneal injection from 0 to day 21 using either saline or UnAG (pharmacological dose: 100 µg/kg) (19,26,27). Mice were treated according to European Guidelines and policies as approved by the University of Turin Ethical Committee.

Laser Doppler Perfusion Imaging (LDPI). Mice were anesthetized as above and subjected to a non-invasive assessment of ischemic limb micro-vascular perfusion using the LDPI system (PIM3, Perimed) (performed at WIL Research Europe Saint Germain-Nuelles, France). Details are reported in Supplemental Materials.

In vivo assessment of limb function. A semiquantitative estimation of foot damage (2-way ANOVA followed by the post-hoc test using the Bonferroni correction for multiple comparison) was performed serially using the following classification: 3= dragging of foot (foot necrosis), 2= no dragging but no plantar flexion (foot damage), 1= plantar flexion but no toe flexion (toe damage), and 0= flexing the toes to resist gentle traction on the tail (no damage) (28)

Histological, immunofluorescence and immunohistochemistry analysis. Gastrocnemius muscles were recovered from the ischemic and normo-perfused limbs of treated animals, fixed in 10% formalin and embedded in paraffin. Tissue sections were stained with hematoxylin and eosin for
histological analysis. The proportion of fibers with central nuclei (regenerating fibers) in the injured area was counted as previously described (19). Muscle sections were processed for immunofluorescence assays and for immunohistochemistry analyses as previously described (29). A quantification of cells that expressed the indicated markers was obtained as previously described (30). Images were acquired using a Zeiss LSM 5 Pascal confocal laser-scanning microscope (Carl Zeiss, Jena, Germany) (19). Details are reported in Supplemental Materials.

Cell cultures and in vitro ischemia. For the ex vivo experiments, endothelial cells (ECs) were isolated (31) from gastrocnemius muscles that had been subjected to ischemia. Details are reported in Supplemental Materials. For the in vitro experiments, primary ECs were either cultured for 2 days in 10% (v/v) BCS and bFGF alone or in combination with 400 µg/ml AGE or 25 mmol/l D-glucose (HG) and either treated with UnAG (1 µmol/L) or not. At day 3, in vitro ischemia was induced as previously described (19). SCs were also isolated as described in (32).

Senescence: Senescence was performed as previously described (33). Details are reported in Supplemental Materials.

Western blot analysis and nuclear extracts. Cells were lysed and processed as previously described (34). H3K56 acetylation was evaluated on nuclear extracts from ECs. Details are reported in Supplemental Materials.

p53 acetylation. Cells were lysed in a cold DIM buffer supplemented with 10 µM Trichostatin A (TSA). Equal amounts of protein (500 µg) were immunoprecipitated using the p53 monoclonal antibody (see Supplemental Materials). Bound proteins were eluted and processed as previously described (35). Immunoprecipitates were subjected to SDS-PAGE and blotted with the anti-acetylated-Lys382 p53 antibody.
RNA isolation and quantitative real-time PCR (qRT-PCR) for miRNAs. Total RNA was isolated, using the TRIzol reagent (Invitrogen), from ECs recovered from the muscles of treated animals or from ECs subjected to in vitro ischemia. Samples were processed as previously described (31). Loss-of-function experiments were performed in ECs transfected with an anti-miRNA negative control or an anti-miR-126 antagonist according to the manufacturer’s instructions.

Statistical analysis. All data are presented as mean±SEM. The D'Agostino–Pearson test was used to test normality. Data on blood perfusion, damage score, number of vessels, percentage of regenerating fibers, inflammatory cells, miR-126 and VCAM-1 expression from the ischemic and non-ischemic limbs of treated ob/ob mice at days 7 and 21 were analyzed using 2-way ANOVA, followed by the post-hoc test with the Bonferroni correction for multiple comparisons. Data on blood glucose, body weight, HbA1c measurements, from adhesion assays, senescence assays, on ROS generation, NO production, CD31/SOD-2 co-localization, CD31/SIRT1 co-localization, PCNA expression, on GTT or ITT assay, from luciferase assays, on miR-126 expression in in vitro or in loss-of-function experiments and SIRT1 and SOD-2 inactivation were analyzed using 1-way ANOVA followed by Tukey's multicomparsion post-hoc test. Densitometric analysis data for the Western blots were analyzed using Student t tests for 2-group comparison and using 1-way ANOVA, followed by Tukey's multiple comparison test, for ≥3 groups. The cut-off for statistical significance was set up at P<0.05 (*P<0.05, **P<0.01, ***P<0.001). All statistical analyses were carried out using GraphPad Prism version 5.04 (Graph Pad Software, Inc).

Blood glucose measurements, Cell proliferation, FACS analyses, Adhesion assays, SIRT1 and SOD-2 silencing, Oxidative stress, Nitric oxide detection, Glucose and Insulin Tolerance Tests and the Luciferase gene reporter are reported in Supplemental Materials.
RESULTS

UnAG protects ob/ob muscles against hind limb ischemia

PAD is one of the most challenging medical-surgical diseases worldwide (1-3). The beneficial vascular effects of UnAG (17,19), have led us to investigate UnAG's therapeutic potential in ob/ob mice with PAD. Ob/ob mice which had been subjected to unilateral hind limb ischemia were treated daily (starting at day 0) with either saline or UnAG. No significant differences in large vessel reperfusion (Figure 1A) were detected in the treatment groups as shown by Laser Doppler Perfusion imaging performed at the indicated number of days post-surgery. However, the functional scores reported in Figure 1B demonstrate a significantly higher damage score in saline than in the UnAG-treated group. UnAG-treated ob/ob mice contained an increased number of regenerating myofibers in ischemia subjected muscles (Figure 1C-D) which is consistent with data obtained in wild type mice (19). Also consistent with our previous data (19), is the finding that UnAG was able to induce an expansion in satellite cells (Pax-7+/MyoD+ cells) as well as their terminal differentiation (myogenin+ cells) (Figure 1E). In order to investigate the possibility that such differences depended on UnAG-mediated vascular protection, the number of vessels in ischemic and non ischemic muscles was counted in the two groups of mice. As shown in Figure 2A, saline-treated mice showed significantly lower capillary density here than in the contra-lateral muscles, unlike UnAG-treated animals. The expression of PCNA and cyclin D1 were then evaluated in ECs recovered from the ischemic muscles of saline and UnAG mice so as to rule out the possibility that proliferation signals may be able to mediate UnAG effects. We found that both PCNA and cyclin D1 expression were similar in the two animal groups at days 7 and 21 after surgery (PCNA: saline, day 7= 24.09±5.2; UnAG, day 7= 20.3±3.3; saline day 21= 20.73±4.6; UnAG, day 21= 24.5±3.8; n=3) (Figure 2B). No changes in plasma glucose concentration (saline 326.3±28.9; UnAG 310.1±31.2 mg/dl), body weight (saline 45.83±0.76; UnAG 45.91±0.9 g), HbA1c (saline 12.38±1.09; UnAG 11.89±1.19) or insulin sensitivity (Figure S1A-B) were detected in UnAG mice over the entire treatment period.
Thus, it can be said that UnAG protects vessels against ischemia-induced damage in ob/ob mice independently of metabolic control.

In vivo UnAG protects vessels against ROS production by inducing SOD-2

Impaired antioxidant machinery and increased ROS production are crucial mediators of vascular damage in diabetes (36). This is particularly true in PAD patients (37), and so ECs recovered from ischemic muscles were first evaluated for intracellular ROS content. Data reported in Figure 2C demonstrate a significant decrease in ROS generation in UnAG over saline-treated mice. In order to validate the possibility that UnAG promotes its biological effects by inducing an efficient antioxidant response, the mitochondria-specific antioxidant enzyme SOD-2 was evaluated in vessels. We demonstrate that the intra-muscle vessels of UnAG-treated mice express high levels of SOD-2 (Figure 2D). Similar results were obtained in *ex-vivo* experiments (Figure 2E).

UnAG increases the levels of SIRT1 in ischemic vessels and protects ECs from senescence. It has been reported that the impaired SIRT1 level contributes to superoxide mitochondrial accumulation in both diabetes and insulin resistance connotated metabolic disorders (38-40). We therefore evaluated SIRT1 expression in both saline and UnAG animals. Data reported in Figure 3A demonstrate that UnAG treatment was associated with increased SIRT1 expression in vessels. ECs were recovered from ischemic muscles and analyzed for SIRT1 expression as a means to validate these observations. As expected, *ex-vivo* experiments demonstrated that ECs that had been recovered from UnAG animals displayed increased SIRT1 content (Figure 3B) both in ischemic and non ischemic muscles. Moreover, a reduced level of histone 3 (H3K56) acetylation (Figure 3C) (14) and a reduced number of senescent ECs were found in ob/ob mice challenged with UnAG (Figure 3D), which is consistent with the role of SIRT1 in regulating endothelial cell fate.
SIRT1 is required for UnAG-mediated EC stress resistance upon ischemia

ECs were treated with AGE and subjected to in vitro ischemia to further deepen the understanding of this data. Figure 4A-C demonstrates that a UnAG challenge interferes with ROS generation and was able to induce both SOD-2 and SIRT1 expression. Moreover, in a finding which is consistent with our previous data in EPCs (17), we demonstrate that UnAG was able to increase nitric oxide levels in an ischemic setting (Figure S1C). Similar results were obtained using high glucose concentrations (data not shown). AGE was thus used throughout the study. We found that pS36p66Shc (38), was reduced in these experimental conditions, as expected from SIRT1 expression (Figure 4D). In addition, p53 acetylation was also reduced upon UnAG treatment and, in accordance with ex-vivo experiments, this effect was associated with a reduced number of senescent ECs (Figure 4E-F). These data were further confirmed by silencing SIRT1 (Figure S2A and Figure 5A-D). Finally, UnAG treatment is only effective in reducing H3K56 acetylation in cells that express SIRT1, in vitro as well (Figure 4G and 5E).

Moreover, UnAG-induced SIRT1 activity is not enhanced by the activation of AMP-activated protein kinase (AMPK) (42), unlike calorie restriction (Figure 4H).

It has been shown that SIRT1 activates, via its deacetylation ability, peroxisome proliferator activated receptor-γ coactivator 1 α (PGC-1α), which is involved in SOD-2 expression (43). ECs were therefore silenced for SIRT1 and subjected to the same experimental conditions. SIRT1 silencing led to reduced SOD-2 expression and increased ROS generation, even in the presence of UnAG, as shown in Figure 5F-G. These data indicate that SIRT1 is crucial for UnAG-mediated SOD-2 expression, p53 and H3K56 deacetylation.

UnAG hampers EC activation and prevents inflammatory cell recruitment in ischemic conditions. Oxidative stress-mediated EC activation strictly controls inflammatory cell recruitment in ischemic conditions (2,3). We found that the ischemic muscles of UnAG mice had a reduced number of CD68-positive inflammatory cells (Figure 6A). In order to investigate the possibility that
UnAG treatment protects ECs against oxidative stress-induced activation, the expression level of VCAM-1 was evaluated. Indeed, we found that vessels from UnAG animals express low levels of VCAM-1 at days 7 and 21 after ischemia when compared to control animals (Figure 6B). Similar results were obtained both ex vivo (Figure 6C) and in vitro when diabetes and ischemia were recapitulated (Figure 6D and Figure S2B).

It has been reported that molecular approaches that force SOD-2 expression led to reduced VCAM-1 expression (9,10). Thus, ECs that had been silenced for SOD-2 were evaluated (Figure S2C). As expected, high levels of VCAM-1 and an increased number of mononuclear cells that were adherent to ECs were detected, even in presence of UnAG (Figure 6E and Figure S2D). Similar results were obtained when ECs were silenced for SIRT1 (Figure 5H).

Posttranscriptional mechanisms involving miR-126 are crucial for UnAG protection against ischemia

Besides precise transcriptional regulation, post-transcriptional regulation involving miR-126 is known to play a role in VCAM-1 expression (11). Indeed, reduced miR-126 plasma levels have been observed in diabetic patients miR profile (12). Therefore, miR-126 levels were evaluated first on ECs recovered from ischemic muscles of UnAG- and saline-treated mice. The results shown in Figure 7A demonstrate that the miR-126 level decreased even in ECs from saline animals. By contrast, the miR-126 level was high in ECs recovered from UnAG mice. Again, the effects of UnAG were evaluated in vitro. In accordance with the ex-vivo experiments, a UnAG challenge led to miR-126 up-regulation in ECs treated with AGE and subjected to ischemia (Figure 7B, left panel). In order to gain further insight into the possibility that the post-transcriptional mechanism controls VCAM-1 expression upon UnAG treatment, the direct effect of miR-126 on VCAM-1-3′-UTR was evaluated by transfecting ECs with the luciferase reporter vector containing wild-type full-length VCAM-1-3′-UTR. Increased luciferase activity was only detected in VCAM-1-3′-UTR that expressed ECs that had been exposed to AGE and in-vitro ischemia, but not when the same experiments were performed in the presence of UnAG (Figure 7C).
Furthermore, UnAG no longer had any effect on ROS production, VCAM-1 expression or on the adhesion of mononuclear cells to ECs (Figure 7D and Figure S3) in loss-of-function experiments involving the transfection of ECs with anti-miR-126 antago-miRs (Figure 7B, right panel). Interestingly, we also noticed that SOD-2 and SIRT1 content, as well as p53 and H3K56 deacetylation, were reduced by the knocking down of miR-126 (Figure 7E-G). Furthermore, UnAG was no longer effective in protecting ECs from ROS production.
DISCUSSION

In this study, we have shown that UnAG improves hind limb functional score in a mouse model of insulin resistance and PAD by protecting vessels against ROS-mediated damage. In particular, we have noticed that UnAG rescues ROS imbalance by restoring miR-126 expression, as well as SIRT1 and SOD-2 levels in vessels from ischemic muscles. These results indicate that restoring the AG/UnAG ratio in an insulin resistance setting can offer clinical benefits in the treatment of PAD and provide novel mechanistic insight into UnAG action.

The imbalance of two different forces, ROS and antioxidants, is crucial in long-term diabetes complications, including PAD (3,5,37). Indeed, the persistence of an oxidative milieu and the inefficient antioxidant machinery in diabetic patients with PAD also contribute to mitochondrial damage, leading to the activation of a vicious circle which clinically results in the appearance of symptoms (3,5,37). In the present study, we demonstrate that UnAG administration to mice with insulin resistance and PAD induces skeletal muscle regeneration. A resident population of adult stem cells, named satellite cells, is present in skeletal muscles and contributes to muscle regeneration after ischemia (44). In accordance with our previous data (19), we found that UnAG promotes SC expansion in response to ischemia. This effect results in a low damage score which, however, appears to be independent of neovascularization (PCNA and cyclin D1 content in ECs recovered from both saline and UnAG mice was similar), but arguably dependent on its antioxidant effects on ECs. As proof of concept in UnAG mice, the number of vessels in ischemic muscles was comparable to the number in non-ischemic ones and ECs recovered from ischemic muscles exhibited low levels of intracellular ROS. This suggests that UnAG, besides inducing muscle regeneration, exerts its beneficial effects in our PAD model of insulin resistance by improving the antioxidant machinery in ECs as well.

Physiologically, superoxide radicals from mitochondria are dismutated to hydrogen peroxide and oxygen by a class of enzymes called superoxide dismutases (37). Such a first line of defense against ROS mainly depends on SOD-2 (37). Human and rodent studies provide evidence for
impaired SOD-2 expression in PAD muscles, particularly in diabetics (37). We herein demonstrate that SOD-2 expression is also reduced in the vessels of saline treated mice, while it was highly expressed in vessels from UnAG-treated animals, in vivo and ex-vivo. That UnAG can induce EC resistance against oxidative stress via SOD-2 is further sustained by data obtained in SOD-2 silenced ECs.

It has been reported that glucose-mediated oxidative stress and NAD+ depletion is associated with the impaired expression of SIRT1 in diabetic patient peripheral cells (40). We found that, in ob/ob mice, the SIRT1 level was lower in ECs recovered from both ischemic and non-ischemic muscles of saline mice, while it increased upon a UnAG challenge. A number of SIRT1 targets have been described in mammals (45), and tumor suppressor p53 is included (38). Transcription factor p53 is involved in DNA damage mechanisms (46). However, it also acts as a negative regulator of cell proliferation in human atherosclerotic lesions (47), and contributes to accelerated vascular cell senescence in diabetes (48). We have previously reported that the silencing of p53 in EPCs from diabetic patients prevents cell senescence (48). We herein demonstrate that UnAG-induced SIRT1 expression results in p53 deacetylation and EC protection against senescence in the ischemic condition. The pS36p66shc level further sustains this (41).

The occurrence of vascular complications in diabetes has recently been linked to the complex interactions between genes and environmental cues which are driven by the persistence of high glucose concentrations (6-8). The impaired clearance of ROS of mitochondria origin is the most relevant environmental cue in the long-lasting detrimental effect of hyperglycaemia (6-8). Growing amounts of evidence indicate that mechanisms that account for so called “metabolic memory” rely on the epigenetic regulation of gene expression which can be irreversible over time (6-8). The important role that epigenetics play in long-term diabetes-associated vascular complications means that particular attention has been devoted to developing therapeutic strategies which “erase epigenetics”. We herein demonstrate that, in diabetic mice subjected to ischemia, UnAG has no effect on blood glucose metabolism but interferes with some epigenetic, hyperglycaemia-associated
mechanisms, including histone modifying enzymes and miRs. In fact, UnAG increases SIRT1 expression by restoring miR-126 expression in ECs which is, in turn, involved in p53 and H3K56 deacetylation and protection against DNA damage (8,13,14). Moreover, SIRT1 rescue translates into SOD-2 expression which restores an efficient anti-oxidant response and further protects vessels against ROS-mediated damage. Overall, UnAG treatment recapitulates the beneficial vascular effects of SOD-2 overexpression (6,9,10). Finally, UnAG also prevents EC activation and inflammatory cell recruitment into ischemic tissues via miR-126-driven VCAM-1 post-transcriptional regulation. It has been extensively documented that the oxidant-sensitive expression of adhesion molecules is a crucial determinant of lesion progression during atherosclerosis evolution (3,5). In addition, ROS imbalance is believed to play a major role in accelerating vascular dysfunction and PAD in diabetes. Thus, UnAG might also protect vessels that are prone to atherosclerosis from undergoing lesion progression by rescuing miR-126 expression and interfering with mechanisms that control inflammatory cell homing. Finally, as NO bioavailability loss in ECs is a crucial feature of endothelial dysfunction, the increased endothelial NO detected in ECs treated with UnAG, besides controlling vascular tone, could further prevent atherogenesis and PAD progression.

We have previously shown that UnAG improves diabetic EPC mobilization by rescuing eNOS activity in bone marrow (17). We have not analyzed EPCs' contribution in the ischemic model, however, the impaired inflammatory cell recruitment observed in UnAG animals strongly suggests that UnAG protection, rather than relying on EPC homing, may rely on their functional improvement. In accordance with this possibility is the fact that renewing miR-126 levels in diabetes rescues EPC functional capabilities and protects them against apoptosis (49). Overall, these data provide further evidence to support the theory that restoring the AG/UnAG ratio in insulin resistance connoted pathological settings can have an impact on patients' cardiovascular risk factor profile.
The incidence of PAD, in particular, in diabetic patients is high and is considered the most challenging of medical-surgical diseases (16). As current therapeutic approaches have failed to improve long-term outcomes, new therapeutic options for PAD are urgently needed. Even though an optimal treatment has yet to be identified, our results indicate that UnAG administration to ob/ob animals counteracts oxidative stress-mediated vascular dysfunction and offers clinical benefits in the treatment of PAD (Figure 8). Although we have no direct evidence to suggest that restoring UnAG plasma concentrations in the insulin resistance state can ameliorate overall clinical outcomes, data provided herein suggest that UnAG or UnAG-related peptides may constitute an alternative therapeutic approach to the management of one of the most relevant vascular complications in insulin resistance connoted pathological settings. Finally, the results of this study, together with the role of mitochondrial dysfunction in the development of several metabolic and age-related disorders, suggest that exploiting UnAG related peptides or UnAG receptor-specific agonists may also be a useful therapeutic strategy with which to address a number of currently unmet medical needs that require ROS scavenging.
Author contributions

GT was involved in the in vivo experiments, IP, cell culture and in vitro ischemia; AT was involved in SC isolation, histological analysis FACS and statistical analysis; PD was involved EC isolation, immunofluorescence, adhesion experiments and luciferase assay; SG was involved in WB, RNA isolation and q-RT-PCR; AR was involved in construct generation and transfection; PC performed animal anesthesia and contributed to the implementation of the murine hind limb ischemia model; RG revised the manuscript; RF scientific contribution; TD scientific contribution; EG revised the manuscript; MFB was involved in study conception and design and in writing the manuscript.

ACKNOWLEDGMENTS

Dr. MF Brizzi is the guarantor of this work, had full access to all data and takes full responsibility for data integrity and the accuracy of data analysis.

SOURCES OF FUNDING: This work was supported by grants obtained by MFB, RG and EG from the Ministero dell’Università e della Ricerca Scientifica (MIUR) progetto PRIN, and from Unito-Compagnia S. Paolo and by MFB from Fondazione per la Ricerca Diabetologica FO.Ri.SID, and by RF from Ministero della Salute (New Idea Award) and AIRC 5x1000 (SPMCO 9979).

DISCLOSURES

All the authors declare no conflict or duality of interest.
REFERENCES

8. Paneni F, Volpe M, Lüscher TF, Cosentino F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes 2013;62:1800-1807

left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation. 2001;104(12):1430-1435

35. Uberti B, Dentelli P, Rosso A, Defilippi P, Brizzi MF. Inhibition of β1 integrin and IL-3Rβ common subunit interaction hinders tumour angiogenesis. Oncogene 2010;29:6581-6590

FIGURE LEGENDS
Figure 1 UnAG protects ob/ob mice against ischemia-induced functional impairment (A) Histogram representation of blood perfusion reported as ratio (mean±SEM, n=13 for each group) of ischemic to normal hind limb for both groups of mice (0b: before surgery; 0a: after surgery). (B) Foot damage score was evaluated for the indicated times. Data are expressed as mean±SEM, n=13 (*P<0.05 UnAG vs saline in ischemic limb). (C) Representative hematoxylin and eosin–stained sections of ischemic muscles from saline- and UnAG-treated mice, at days 7 and 21 post surgery. Scale bar: 80 µm (×20 magnification). Insets show regenerating myofibers at higher magnification. (D) Quantification of the percentage (mean±SEM) of regenerating fibers, characterized by the presence of a centrally located nucleus. UnAG- and saline-treated mice were analyzed at days 7 and 21 post surgery (**P<0.01 ischemic muscles of UnAG-treated mice vs saline-treated mice at days 7 and 21; *P<0.05 UnAG-treated mice at day 7 vs day 21). (E) Cell extracts from satellite cells (SCs) recovered from ischemic muscles at days 7 and 21 were analyzed by Western blot for Pax-7, MyoD and myogenin content and normalized to tubulin content. (**P<0.01 Pax-7 and Myo-D content in ischemic SCs from UnAG- vs saline-treated mice at day 7; ***P<0.001 myogenin content in ischemic SCs from UnAG- vs saline-treated mice at day 21; ***P<0.001 Pax-7 and Myo-D from UnAG-treated mice at day 7 vs day 21; **P<0.01 myogenin from UnAG-treated mice at day 7 vs day 21). A-D, n=13 each group at days 7 and 21; E, n=3 each group at day 7 and 21.

Figure 2. UnAG protects the intra-muscle vessels of ob/ob mice subjected to hind limb ischemia and increases SOD-2 expression. (A) Sections of ischemic muscles recovered from saline- and UnAG-treated mice at days 7 and 21 post surgery were stained for CD31 (red) and DAPI (blue). Red arrows indicate vessels. Scale bar: 40 µm (×40 magnification). The graph on the right represents the number of vessels in ischemic (ih) and normo-perfused (nh) gastrocnemius muscles as evaluated by 3 different operators counting 10 fields at ×40 magnification and are reported as mean±SEM (n=7 each group at days 7 and 21) of vessels per field (**P<0.01 ih muscles of UnAG mice vs ih muscles of saline mice at days 7 and 21). (B) Cell extracts of ECs recovered from ischemic muscles of treated mice at day 7 and day 21 were analyzed for cyclin D1
content by Western blot and normalized to β-actin content. The results are representative of 3 different experiments. (C) Intracellular ROS generation was analyzed using a Amplex Red fluorescence assay kit on ECs recovered from muscles of treated mice by cell-magnetic sorting at day 21 after ischemia. The fluorescence level (mean±SEM, n=3 each group) is reported as fold induction relative to “saline” values which were arbitrarily set as 100. (*P<0.05 UnAG- vs saline-treated mice). (D) Representative stained sections for CD31 (red), SOD-2 (green) and DAPI (blue) of muscles recovered at days 7 and 21 post surgery. Insets show SOD-2 and CD31 co-localization at higher magnification. Scale bar: 40 µm (×40 magnification). Quantification of SOD-2+/CD31+ cells per field (×40 magnification) in ischemic vessels of treated mice is reported in the histogram (mean±SEM, n=7 each group) (***P<0.001 UnAG- vs saline-treated mice at days 7 and 21). (E) Cell extracts of ECs recovered from ischemic muscles of treated mice at day 21 were analyzed for SOD-2 content by Western blot and normalized to β-actin content. The results are representative of 3 different experiments. (*P<0.05 ECs from UnAG- vs saline-treated mice).

Figure 3. UnAG increases SIRT1 levels in ischemic vessels and protects ECs from senescence.

(A) Representative stained sections for CD31 (red), SIRT1 (green) and DAPI (blue) of muscles recovered at days 7 and 21 after ischemia. Insets show SIRT1 and CD31 co-localization at higher magnification. Scale bar: 40 µm (×40 magnification). Quantification of SIRT-1+/CD31+ cells per field (×40 magnification) in ischemic vessels of treated mice is reported in the histogram (mean±SEM, n=7 each group) (***P<0.001 UnAG- vs saline-treated mice at days 7 and 21). (B) ECs recovered from non-ischemic or ischemic muscles as described in Research Design and Methods were subjected to Western blot analysis for SIRT1 content. Protein levels were normalized to β actin content. (**P<0.01 UnAG- vs saline-treated mice for non-ischemic ECs;**P<0.01 UnAG- vs saline-treated mice for ischemic ECs; n=3). (C) Cell extracts from ECs recovered from the ischemic muscles of treated mice were analyzed for H3K56ac content which was normalized to H3 content. (**P<0.01 UnAG vs saline; n=3). (D) Senescence was evaluated on ECs recovered
from ischemic muscles at day 21 and expressed as the mean±SEM of SA-β-gal–positive cells per field (**P<0.01 UnAG vs saline; n=3).

Figure 4. In vivo UnAG effects are recapitulated in ECs subjected to in vitro ischemia. (A) Intracellular ROS generation was evaluated using an Amplex Red fluorescence assay kit in ECs subjected to in vitro ischemia and untreated (c) or treated with AGE (A), UnAG (U) or AGE+UnAG (A+U). Fluorescence level (mean±SEM, n=4) is reported as fold induction relative to control values which were arbitrarily set as 100 (**P<0.01 AGE-treated vs untreated ECs; ***P<0.001 UnAG- and AGE+UnAG vs AGE-treated ECs). (B-E) Cell extracts from ECs subjected to in vitro ischemia and treated as indicated were analyzed for SIRT1 (B), SOD-2 (C) and pS36p66Shc (p-p66Shc) (D) content, normalized to β actin and p66Shc content, or for acetylated and total p53 content (E). (**P<0.01 for SIRT1, ***P<0.001 for SOD-2, *P<0.05 for p-p66Shc UnAG and AGE+UnAG vs untreated or AGE-treated ECs; ***P<0.001 for acetylated p53 in UnAG and AGE+UnAG vs AGE). (F) Senescence was evaluated on ECs treated as above and expressed as the mean±SEM of SA-β-gal–positive cells per field. (**P<0.001 UnAG and AGE+UnAG vs untreated or AGE). Empty bar: control; cross line bar: AGE; horizontal line bar: UnAG; black bar: UnAG+AGE. (G-H) Nuclear H3K56ac (G) and cytoplasmatic phospho (p)-AMPK (H) content was evaluated in ECs treated as indicated. Protein levels were normalized to H3 or AMPK content, respectively. (**P<0.001 AGE vs untreated and UnAG or AGE+UnAG vs AGE for H3K56ac). All results are representative of 4 different experiments performed in triplicate. c=control, A=AGE, U=UnAG, A+U=AGE+UnAG.

Figure 5. SIRT1 is required for UnAG-mediated stress resistance upon ischemia. (A-C) ECs that were untreated (c) or treated with AGE (A), UnAG (U) or AGE+UnAG (A+U) were transfected for 48 hours with SIRT1 siRNA and subjected to in vitro ischemia. Western blot analysis was performed to evaluate the content of SIRT1 (A) and pS36p66Shc (p-p66Shc) (B), normalized to β actin and p66Shc content and acetylated or total p53 content (C). (D) Senescence was evaluated on ECs treated as above and expressed as the mean±SEM of SA-β-gal–positive cells.
Cell extracts from ECs treated as above were subjected to Western blot analysis to evaluate H3K56ac and H3 content (E) or SOD-2, VCAM-1 and β actin content (F). Intracellular ROS generation was evaluated using the Amplex Red fluorescence assay kit in ECs treated as indicated and subjected to in vitro ischemia. Fluorescence level (mean±SEM, n=4) is reported as fold induction relative to control values which were arbitrarily set as 100. The adhesion assay was performed by plating red labeled peripheral blood-mononuclear cells (PB-MNCs) on an EC monolayer that had previously been silenced for SIRT1. Treatments are indicated. Adherent cells were counted and reported as mean±SEM per field (20× magnification). All results are representative of 4 different experiments performed in triplicate.

Figure 6. UnAG hampers EC activation and prevents inflammatory cell recruitment in ischemic conditions. (A) Sections of ischemic muscle which had been recovered from saline- and UnAG-treated mice, 7 and 21 days post surgery, and stained for CD68 (red) and DAPI (blue). Scale bar: 40 μm (×40 magnification). Quantification of inflammatory cells in the ischemic muscles from treated mice at indicated times is reported. Data are expressed as mean±SEM (n=7 each group at day 7 and at day 21) of CD68+ cells per field (×40 magnification) (***P<0.001 ischemic muscles of saline- vs UnAG-treated mice at days 7 and 21). (B) Representative sections of VCAM-1 expression in the ECs of muscles recovered at days 7 and 21 post-surgery from saline- and UnAG-treated mice. Immunohistochemistry analyses are reported. Scale bar: 40 μm (×40 magnification). Quantification of VCAM-1+ cells per field (×40 magnification) in ischemic vessels of treated mice is reported in the histogram (mean±SEM, n=7 each group) (***P<0.001 UnAG- vs saline-treated mice at days 7 and 21). (C) ECs recovered from ischemic muscles at day 21 were subjected to Western blot analysis for VCAM-1 content. Protein levels were normalized to β actin content. (*P<0.05 UnAG- vs saline-treated mice; n=3). (D) Cell extracts from ECs subjected to in vitro ischemia and treated as indicated were evaluated for VCAM-1 and β actin content (***P<0.001 AGE vs untreated cells; *P<0.05 AGE+UnAG vs AGE). (E) ECs untreated (c) or treated with AGE...
(A), UnAG (U) or AGE+UnAG (A+U) were transfected for 48 hours with siRNA of SOD-2 and subjected to \textit{in vitro} ischemia. Western blot analysis was performed to evaluate the content of SOD-2 and VCAM-1, normalized to β actin content. The results in D-E are representative of 4 different experiments performed in triplicate.

Figure 7. miR-126 is crucial for UnAG-mediated vessel protection against ischemia. (A) miR-126 expression was evaluated by qRT-PCR on ECs recovered from the ischemic muscles of mice treated as indicated at days 7 and 21 post surgery. Data normalized to RNU6B are representative of 3 experiments (n=3 each group) (**P<0.001 UnAG- vs saline-treated mice at days 7 and 21). (B) miR-126 expression was evaluated by qRT-PCR in two groups of ECs that had either undergone transfection with anti-miR-126 oligonucleotides or not, were treated with the indicated stimuli and subjected to \textit{in vitro} ischemia. Data normalized to RNU6B are representative of 4 experiments. (**P<0.001 UnAG vs untreated cells; **P<0.01 AGE+UnAG vs AGE; **P<0.01 treated vs untreated ECs transfected with anti-miR-126). (C) ECs were either transfected with pGL3 empty vector or pGL3-3′-UTR-full length-VCAM-1 luciferase constructs, treated as indicated and subjected to \textit{in vitro} ischemia. Relative luciferase activity is reported (**P<0.001 AGE vs untreated cells and AGE+UnAG vs AGE) (n=4). Empty bar, control (c); cross line bar, AGE (A); horizontal line bar, UnAG (U); black bar, UnAG+AGE (A+U). (D-G) Cell extracts from ECs transfected with anti-miR-126 and treated as above were analyzed for VCAM-1 (D), SIRT1 and SOD-2 (E) and H3K56ac (F) content, normalized to β actin or H3 content, as indicated, or for acetylated and total p53 content (G). The results in D-G are representative of 4 different experiments performed in triplicate.

Figure 8. Schematic representation of UnAG effects following ischemia. Following muscle damage, UnAG induces skeletal muscle regeneration via SC proliferation and differentiation and vascular cell protection. Its effects are mediated by miR-126 up-regulation. The increased level of miR-126 leads to: a) increased SIRT1 expression which prevents cell senescence via epigenetic mechanisms (reduced p53 and H3K56 acetylation); b) increased SOD-2 expression which protects
ECs from ROS generation which, in turn, contributes to avoiding cell senescence; c) reduced VCAM-1 expression and inflammatory cell recruitment.

SC, satellite cell; UnAG, unacylated ghrelin; SOD-2, superoxide dismutase-2; ROS, reactive oxygen species; SIRT1, sirtuin-1; VCAM-1, vascular cell adhesion molecule-1; miRs, miRNAs, p53ac, acetylated p53; H3K56ac: Histone 3 lys 56 acetylated.
Diabetes
Figure 5

A

B

C

D

E

F

G

H

200x220mm (300 x 300 DPI)
Figure 7

A mR-126 expression in ECs derived from ischemic muscles

B In vitro mR-126 expression

C Relative luciferase activity

D E F G

138x91mm (300 x 300 DPI)
Supplemental Figure 2

A

B

C

D

Diabetes
Table 1. Reagents and antibodies

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Purchased from</th>
</tr>
</thead>
<tbody>
<tr>
<td>collagenase IA, FCS, FBS, RNase, SDS, PIPES, Triton X-100, Nomidet P-40, NaCl, NaF, NaOH, Na,P2O7, MgCl2, KCl, HCl, Na-azide, Hapes, Tris, EDTA, EGTA, ethanol, aprotinin, pepstatin A, PMSF, DTT, leupeptin, penicillin-streptomycin, HEPES, Trichostatin A, DAPI, sucrose, advanced glycation end-products (AGEs), protein A–Sepharose beads</td>
<td>Sigma-Aldrich (St Louis, MO, USA)</td>
</tr>
<tr>
<td>Protein molecular weight markers, Acrylammide, polyvinylidene difluoride (PVDF) membranes</td>
<td>Bio-Rad (Hercules, CA, USA)</td>
</tr>
<tr>
<td>Gene Ruler™ DNA ladder mix and Gene Ruler™ DNA ladder plus</td>
<td>Fermentas International Inc (Burlington, Canada)</td>
</tr>
<tr>
<td>Nylon mesh cell strainer (100 µm, 70 µm, 40 µm)</td>
<td>BD Bioscience Pharmingen (Franklin Lakes, NJ, USA)</td>
</tr>
<tr>
<td>UnAG</td>
<td>Phoenix Pharmaceuticals (Belmont, CA, USA)</td>
</tr>
<tr>
<td>Lipofectin® Reagent, TRIzol, DMEM Amplex Red Assay kit</td>
<td>Invitrogen™ (Life Technologies Carlsbad, CA, USA; Paisley, UK).</td>
</tr>
<tr>
<td>Nitric oxide assay kit</td>
<td>Abcam (Cambridge, UK), Aerrane®, Baxter, Italy</td>
</tr>
<tr>
<td>Isofluorane</td>
<td></td>
</tr>
</tbody>
</table>

Antibodies

<table>
<thead>
<tr>
<th>Antibodies an anti-miR126</th>
<th>Purchased from</th>
</tr>
</thead>
<tbody>
<tr>
<td>monoclonal anti-PCNA</td>
<td>Abcam (Cambridge, UK)</td>
</tr>
<tr>
<td>anti- H3K56ac</td>
<td></td>
</tr>
<tr>
<td>anti-H3</td>
<td></td>
</tr>
<tr>
<td>anti-pS36p66Shc</td>
<td></td>
</tr>
<tr>
<td>anti CD31</td>
<td>BD Bioscience Pharmingen (Franklin Lakes, NJ, USA)</td>
</tr>
<tr>
<td>anti CD68</td>
<td></td>
</tr>
<tr>
<td>anti SIRT1</td>
<td></td>
</tr>
<tr>
<td>Cyclin D1</td>
<td></td>
</tr>
<tr>
<td>anti SOD-2</td>
<td></td>
</tr>
<tr>
<td>anti VCAM-1</td>
<td></td>
</tr>
<tr>
<td>anti-p53</td>
<td></td>
</tr>
<tr>
<td>anti-p66 shc</td>
<td></td>
</tr>
<tr>
<td>Pax-7</td>
<td></td>
</tr>
<tr>
<td>MyoD</td>
<td></td>
</tr>
<tr>
<td>myogenin</td>
<td></td>
</tr>
<tr>
<td>anti-pAMPK</td>
<td></td>
</tr>
<tr>
<td>anti-AMPK</td>
<td></td>
</tr>
<tr>
<td>anti-acetylated-Lys382 p53 antibody</td>
<td></td>
</tr>
<tr>
<td>anti rabbit IgG, HRP linked</td>
<td></td>
</tr>
<tr>
<td>anti mouse IgG, HRP linked</td>
<td></td>
</tr>
<tr>
<td>anti mouse, rabbit and goat IgG-TRITC</td>
<td></td>
</tr>
<tr>
<td>S. Cruz Biotechnology (Heidelberg, Germany)</td>
<td></td>
</tr>
<tr>
<td>Cell Signaling (Danver, MA, Usa).</td>
<td></td>
</tr>
<tr>
<td>Southern Biotech (Birmingham, AL 35209, USA)</td>
<td></td>
</tr>
<tr>
<td>Life Technologies (Carlsbad, CA, USA;</td>
<td></td>
</tr>
</tbody>
</table>
Murine hind limb ischemia model. Male C57BL/6J ob/ob mice (8 weeks-old) (Charles River Laboratories International Inc., Wilmington, MA, USA) were anesthetized on day 0 with isofluorane (2 to 2.5 % in 100 % oxygen) and unilateral hind limb ischemia was induced, as described in (1). The entire right hind limb femoral artery and vein were exposed and isolated from the inguinal region to the bifurcation of the saphenous/popliteal artery. Exposed vessels were ligated at their proximal and distal ends (poplitea ramification), and both vessels were excised. The normo-perfused contra-lateral limb of each mouse was used as an internal control. After hind limb ischemia, animals (13 mice per group) were treated daily with an intra-peritoneal injection, from 0 to day 21, that contained either saline or UnAG (100 µg/kg). Mice were treated according to European Guidelines and policies as approved by the University of Turin's Ethical Committee.

Laser Doppler Perfusion Imaging (LDPI). Mice were anesthetized as above and hair was removed using an electric shaver. A serial, non-invasive assessment of ischemic limb microvascular perfusion was performed in triplicate and in a blinded manner using the LDPI system (PIM3, Perimed). Identical regions, that were equal in area and that encompassed the distal leg (entire foot) of both ischemic and contralateral, non-ischemic limbs were assessed for perfusion quantification using LDPI processing software (v5.0) (performed at WIL Research Europe Saint Germain-Nuelles, France).

In vivo assessment of limb function. A semiquantitative estimation of foot damage (2-way ANOVA followed by the post-hoc test with Bonferroni correction for multiple comparison) was performed serially using the following classification: 3=dragging of foot (foot necrosis), 2=no dragging but no plantar flexion (foot damage), 1=plantar flexion but no toe flexion (toe damage), and 0=flexing the toes to resist gentle traction on the tail (no damage) (2).

Histological, immunofluorescence and immunohistochemistry analysis. Gastrocnemius muscles were recovered from the ischemic and normo-perfused limbs of treated animals, fixed in 10% formalin and embedded in paraffin. Tissue sections (5 µm) were stained with hematoxylin and eosin for histological analysis. The proportion of fibers with central nuclei (regenerating fibers) was counted in the injured area and the cross-sectional areas of the fibers in the injured and non-injured areas. Measurements were obtained using the MetaMorph software (Life Sciences Research Imaging Systems). Muscle sections were processed for immunofluorescence assays as previously described (3) using anti-CD68, anti-SOD2, anti-CD31 and anti-SIRT1 antibodies. DAPI was used as a nuclear marker. In order to quantify cells that express the indicated markers, positive cells were counted in 10 randomly selected fields in 5 different samples (40X magnification). The number of CD31-positive vessels was evaluated by counting 10 randomly selected fields in 3 different samples (40X magnification). Images were acquired using a Zeiss LSM 5 Pascal confocal laser-scanning microscope (Carl Zeiss, Jena, Germany) which was equipped with a helium/neon laser (543 mm), an argon laser (450-530 mm) and an EC planar Neofluar 40×/1.3 oil-immersion differential interference contrast objective lens. Images were analyzed using Zeiss LSM 5 version 3.2 software (4).

For immunohistochemistry analysis, sections from paraffin-embedded samples were collected and placed onto poly-lysine–coated slides. Endogenous peroxidase activity was blocked with 6% H2O2 for 8 minutes at room temperature. The anti-VCAM-1 antibody was applied to slides overnight at
4°C in order to detect VCAM-1 expression. Horseradish peroxidase–labeled anti-rabbit Envision polymer (DakoCytomation, Carpinteria, CA) was incubated for 30 minutes. The reaction product was developed using 3,3-diaminobenzidine. The omission of the primary Ab or substitution with an unrelated rabbit serum IgG served as a negative control. The percentage of positive cells was counted in 4 non-sequential sections for each experiment at 40X magnification (5).

Cell cultures and in vitro ischemia. The *ex vivo* experiments saw endothelial cells (ECs) being isolated from gastrocnemius muscles that had been subjected to ischemia (6 mice). Muscles were finely minced with scalpels and digested by incubation for 1h at 37°C in HBSS that contained 0.1% collagenase IA. After washing in the medium plus 10% Bovine Calf Serum (BCS), the cell suspension was then passed through a graduated series of nylon mesh cell strainers (100µm, 70µm and 40µm) which separated mononuclear cells from muscle fibers and myofibril fragments. Cells were re-suspended and ECs were isolated using the anti-mouse CD31 antibody coupled to magnetic beads by magnetic cell sorting using the MACS system (Miltenyi Biotec, Auburn, CA) (6). Briefly, cells were labeled with the anti-mouse CD31 antibody for 20 min and were then washed twice and re-suspended in MACS buffer (PBS without Ca2+ and Mg2+, supplemented with 1% BSA and 5 mM/L EDTA) at the concentration of 0.5× 10^6 cells/80 µl. After washing, the cells were separated on a magnetic stainless steel wool column, according to manufacturer’s instructions. Positive separated cells correspond to ECs, while negative separated cells were considered to be principally composed of myofibril fragments. For the *in vitro* experiments, ECs were isolated from the human umbilical vein by Trypsin treatment within 4 hours of delivery (0.1%, w/v), cultured in Medium 199 with the addition of 20% (v/v) BCS and 5 ng/ml of bFGF and used at early passages (II-III). Throughout the study, ECs were cultured for 2 days in normal medium (5 mmol/l D-glucose) plus 10% (v/v) BCS and bFGF (5 ng/ml), either alone or in combination with 400 µg/ml AGE or 25 mmol/l D-glucose (HG) and treated in two groups; either with or without UnAG (1µmol/L).

At day 3, cells were subjected to *in vitro* ischemia which was induced by incubating cells in DMEM + 2% Foetal Calf Serum (FCS) at 5% CO2/95% N2 humidified atmosphere, yielding 1% O2 concentrations for 24h (3). SCs were also isolated from the gastrocnemius muscles of ob/ob mice that had been subjected to ischemia, muscle samples were subjected to enzymatic digestion as described (7) to obtain SCs.

Cell proliferation. Cell proliferation of ECs that had been recovered from the ischemic muscles of saline and UnAG-treated mice was assayed by evaluating the percentage of PCNA-positive cells by FACS analysis, as described previously (8). Cyclin D1 expression was evaluated by western blot as previously described (9).

FACS analysis. ECs which had either been treated with the indicated stimuli or had been left untreated were either labeled with the anti-VCAM-1 antibody or with a preimmune monoclonal antibody for 30 minutes at 4°C. They were washed twice in PBS and incubated with fluorescein-labeled anti–mouse IgG for the same amount of time. The expression of cell surface molecules was evaluated by flow cytometry (FACScan; Becton Dickinson, San Jose, CA).

ROS detection. ROS production was performed using the horseradish peroxidase-linked Amplex Red fluorescence assay kit (Molecular Probes, Invitrogen). To this end, Amplex Red (50 µM) and horseradish peroxidase type II (0.1 U/ml) were added to cell lysates and processed according to manufacturer’s instructions. All experiments were performed in triplicate (10).

Detection of nitric oxide: NO detection was evaluated by measuring NO production on ECs treated with the indicated stimuli and subjected to *in vitro* ischemia (11). Briefly, equal amounts of proteins
were collected and nitrate plus nitrite levels were measured with the Griess assay kit according to manufacturer's instructions (Abcam, Cambridge, UK).

Western blot analysis and nuclear extracts. Cells were lysed (50 mmol/L Tris HCl [pH 8.3], 1% Triton X-100, 10 mmol/L PMSF, 100 U/ml aprotinin, 10 µmol/L leupeptin) and protein concentrations were obtained as previously described (12). Proteins (50 µg) were subjected to SDS-PAGE, transferred onto nitrocellulose membranes, blotted with the indicated antibodies and revealed using a chemiluminescence detection system (ECL). Densitometric analysis was used to calculate the differences in the fold induction of protein levels and normalized to β-actin, H3, p66Shc, AMPK or p53 content. Values are reported as relative amounts. In order to evaluate H3 acetylation, nuclear extracts from ECs, treated with the indicated stimuli and subjected to *in vitro* ischemia, were obtained as previously described (12) and processed as indicated.

p53 acetylation. Cells were lysed in cold DIM buffer (50 mmol/l Pipes, pH 6.8, 100 mmol/l NaCl, 5 mmol/l MgCl₂, 300 mmol/l sucrose, 5 mmol/l EGTA, 2 mmol/l sodium orthovanadate plus 1% Triton X-100 and a mixture of protease inhibitors/1 mmol/l phenylmethylsulfonyl fluoride, 10 mg/ml leupeptin, 0.15 U/ml aprotinin and 1 mg/ml pepstatin A) and supplemented with 10 µM Trichostatin A (TSA) to prevent deacetylation after cell lysis. Equal amounts of proteins (500 µg) were immunoprecipitated with p53 monoclonal antibody for 6 h at 4°C and the immunocomplexes were bound to protein A–Sepharose beads at 4°C over night. Bound proteins were eluted and processed as described previously (13). Immunoprecipitates were subjected to SDS-PAGE, transferred onto nitrocellulose membranes, blotted with the anti-acetylated-Lys382 p53 antibody and revealed using a chemiluminescence detection system (ECL). Densitometric analysis was used to calculate the differences in the fold induction of protein levels and normalized to p53 content. Values are reported as relative amounts.

Senescence assay. Senescence was evaluated by measuring acidic β-gal activity on ECs treated with the indicated stimuli and subjected to *in vitro* ischemia, and on ECs recovered from the ischemic muscles of treated animals (14). Briefly, ECs were washed in PBS, fixed for 3 minutes at room temperature in 2% paraformaldehyde, washed and incubated for 24 hours at 37°C with fresh SA-β-gal stain solution: 1 mg/ml 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-gal), 5 mM potassium ferrocyanide, 5 mM ferricyanide, 150 mM NaCl, 2 mM MgCl₂, 0.01% sodium deoxycholate and 0.02% Nonidet P-40. Senescence was expressed as the percentage of SA-β-gal-positive cells over a total of 100 cells, manual count at 20X magnification by 3 independent investigators.

Silencing of the endogenous SIRT1 and SOD-2 by small interfering RNAs (siRNAs) In order to obtain SIRT1 and SOD-2 inactivation, ECs were transiently transfected with siRNA for SIRT1, with siRNA for SOD-2 or with duplex siRNAs (Qiagen, Valencia, CA, USA) (13) and treated as indicated. Transfection was performed according to manufacturer's instructions. Whole cell extracts were processed 48h after transfection. Cell viability was evaluated at the end of each experiment.

Adhesion assay. The adhesion of peripheral blood mononuclear cells (PB-MNCs) on ECs that had either been silenced for SIRT1, SOD-2 or miR-126 or not, and treated as indicated, was assayed. Briefly, PB-MNCs, obtained by Ficoll Histopaque 1077 (Sigma-Aldrich) were labeled with the red fluorescent PKH26 (Sigma-Aldrich) vital dye and, after centrifugation at 1400g for 10 minutes, re-suspended in medium free that contained 0.25% bovine serum albumin. Cells were then added (at 2 × 10⁵ cells per well) to a confluent monolayer of ECs, that had either been left untreated or treated as indicated. Co-cultures were thus incubated at 37°C for 4h and non-adherent cells were removed by being washed three times with a phosphate-buffered saline. Samples were then fixed with 4% formaldehyde/phosphate-buffered saline and observed under an epifluorescence microscope. Bound
labeled cells were counted by three different operators in triplicate (10 fields at × 20 magnification per sample).

RNA isolation and quantitative real-time PCR (qRT-PCR) for miRNAs. Total RNA was isolated using the TRIzol reagent (Invitrogen), either from ECs that had been recovered from the muscles of treated animals or from ECs that had been subjected to *in vitro* ischemia. The RNA was then reverse-transcribed using a TaqMan microRNA RT kit, specific for miR-126, and subjected to qRT-PCR using a TaqMan microRNA assay kit and the ABI PRISM 7700 sequence detection system (Applied Biosystems). miRNA expression was normalized to the small nuclear RNA RNU6B. Loss-of-function experiments were performed in saline- or UnAG-treated ECs that had been transfected for 48 h with the anti-miRNA negative control or the anti-miR-126 antagonist (Applied Biosystem, Foxter Cyto CA, USA), according to manufacturer’s instructions (6).

Luciferase gene reporter. The luciferase reporter assay was performed using a construct generated by subcloning the PCR products amplified from the full-length 3’UTR of VCAM1 DNA into the xbaI restriction site of the luciferase reporter vector pGL3 (Promega Italia S.R.L., Milano Italy). The PCR products were obtained using the following primer: VCAM1: 3’ UTR response element: GTATAGTACTGGCATGGTACGG. The insert identities were verified by sequencing. The pGL3, pGL3-3’UTR VCAM-1 reporter vectors were transiently co-transfected in ECs that had been subjected to *in vitro* ischemia and treated, as indicated, at a 10:1 molar ratio with the pRL vector, that codes for *Renilla* luciferase, used as an internal control for the luciferase assay (15).

Blood glucose measurement. Just before sacrifice, the maximum volume of blood from each group of mice was collected under isofluorane anaesthesia (Aerrane®, Baxter) from the abdominal aorta. Recovered plasma glucose levels (Charles River Lab, Lecco, Italy) are reported: 7 saline-treated ob/ob mice (blood glucose, 326.3 ± 28.9 mg/dL); 7 UnAG-treated mice (blood glucose, 310.1 ±31.2 mg/dL). Blood glucose was measured using a One Touch II glucose meter (Lifescane, Mountain View, CA), according to manufacturer's instructions. Glycated hemoglobin was measured in whole blood samples by quantitative immunoturbidimetric latex determination (Sentinel Diagnostic, Milan, Italy).

Glucose Tolerance (GTT) and Insulin Tolerance Tests (ITT). Glucose tolerance and insulin sensitivity, evaluated in 8 week old ob/ob mice (6 mice), were measured as follows: mice were subjected to 16 hrs of fasting and injected i.p. with 1 g glucose/kg body weight (20% D-glucose, Sigma, in 0.9% saline) for GTT, and 0.75 U insulin/kg body weight (Humulin R, Lily, Indianapolis, USA) for ITT, as indicated. Glucose levels [mg/dL] (tail blood) were measured using a One Touch II glucose meter (Lifescane, Mountain View, CA), before (0 min) and at time intervals (30, 60, 90 and 120 min) after injection. (16).

Statistical analysis. All data are presented as mean±SEM. The D'Agostino–Pearson test was used to test normality. Data on blood perfusion, damage score, number of vessels, percentage of regenerating fibers, inflammatory cells, miR-126 and VCAM-1 expression from the ischemic and non-ischemic limbs of treated ob/ob mice at days 7 and 21 were analyzed using 2-way ANOVA, followed by the post-hoc test with the Bonferroni correction for multiple comparisons. Data on blood glucose, body weight, HbA1c measurements, from adhesion assays, senescence assays, on ROS generation, NO production, CD31/SOD-2 co-localization, CD31/SIRT1 co-localization, PCNA expression, on GTT or ITT assay, from luciferase assays, on miR-126 expression in *in vitro* or in loss-of-function experiments and SIRT1 and SOD-2 inactivation were analyzed using 1-way ANOVA followed by Tukey's multicomparison post-hoc test. Densitometric analysis data for the Western blots were analyzed using Student t tests for 2-group comparison and using 1-way ANOVA, followed by Tukey's multiple comparison test, for ≥3 groups. The cut-off for statistical
significance was set up at $P<0.05\ (*P<0.05\,\ **P<0.01\,\ ***P<0.001)$. All statistical analyses were carried out using GraphPad Prism version 5.04 (Graph Pad Software, Inc).

REFERENCES

Supplemental Figure 1. (A-B) Glucose tolerance test (GTT in A) and insulin tolerance test (ITT in B) was performed, as described in Supplemental Materials, in saline- or UnAG-treated ob/ob mice subjected to 16 hrs fasting. Data (mg/dl of glucose) are reported as mean±SEM (n=3 each group). (C) NO production on ECs treated as indicated and subjected to in vitro ischemia was evaluated as nitrate plus nitrite levels and reported in histogram (mean±SEM of nitrite level, nmol/L, n=4) (*P<0.05 UnAG and AGE+UnAG vs control and AGE).

Supplemental Figure 2. (A) ECs subjected to in vitro ischemia and treated as indicated were transfected with the scramble-sequence or with SIRT1 siRNA. Cell extracts were analyzed for SIRT1 content, normalized to β actin content (**P<0.01 AGE+UnAG vsAGE). (B) VCAM-1 expression on ECs subjected to in vitro ischemia and treated as indicated was evaluated by FACS analysis (***P<0.001 AGE vs untreated cells; *P<0.05 UnAG and AGE+UnAG vs AGE). Red line, control; black line, AGE; blue line, UnAG; green line, AGE+UnAG (A+U). (C) Cell extracts from ECs treated as in A and transfected with the scramble-sequence or with SOD-2 siRNA were analyzed by Western blot for SOD-2 and β actin content (**P<0.01 AGE+UnAG vsAGE). (D) The adhesion assay was performed by plating red labeled PB-MNCs on an EC monolayer that had either been previously silenced, or not, for SOD-2. Stimuli are indicated. Adherent cells were counted and reported as mean±SEM per field (20× magnification) (*P<0.05 AGE vs untreated cells; ***P<0.001 UnAG and AGE+UnAG vs AGE). All results are representative of 4 different experiments performed in triplicate. c=control, A=AGE, U=UnAG, A+U=AGE+UnAG.

Supplemental Figure 3 (A) Intracellular ROS generation was evaluated using the Amplex Red fluorescence kit assay in ECs transfected with anti-miR-126 oligonucleotides and subjected to in vitro ischemia in the presence or in the absence of AGE (A), UnAG (U) or AGE+UnAG (A+U). Flourescence level (mean±SEM, n=4) is reported as fold induction relative to control values arbitrarily set as 100 (B) The adhesion assay was performed by plating red labeled PB-MNCs on an EC monolayer which had been treated as above. Adherent cells were counted and reported as mean±SEM per field (20× magnification).