Title: Hyperhexosemia-induced retinal vascular pathology in a novel primate model of diabetic retinopathy

Short Running Title: A primate model of diabetic retinopathy

Authors: Argyrios Chronopoulos1,*, Sumon Roy1,*, Ekaterina Beglova1, Keith Mansfield2, Lynn Wachtman2, Sayon Roy1

Affiliation: 1Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; 2Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts.

*Argyrios Chronopoulos and Sumon Roy have contributed equally to this work.

Word count: 1,988 Number of Tables and Figures: 4

Corresponding author: Sayon Roy, Ph.D., 650 Albany Street, Departments of Medicine and Ophthalmology, Boston University School of Medicine. Tel: (617) 638-4110, Fax: (617) 638-4177. Email: sayon@bu.edu
Abstract

The paucity of animal models exhibiting full pathology of diabetic retinopathy (DR) has impeded understanding of the pathogenesis of DR and the development of therapeutic interventions. Here we investigated if hyperhexosemic marmosets (*Callithrix jacchus*) develop characteristic retinal vascular lesions including macular edema (ME), a leading cause of vision loss in DR. Marmosets maintained on 30% galactose (gal)-rich diet for two years were monitored for retinal vascular permeability, development of ME, and morphological characteristics including acellular capillaries (AC) and pericyte loss (PL), vessel tortuosity, and capillary basement membrane (BM) thickness. Excess vascular permeability, increased number of AC and PL, vascular BM thickening, and increased vessel tortuosity were observed in the retinas of gal-fed marmosets. Optical coherence tomography (OCT) images revealed significant thickening of the retinal foveal and the juxtafoveal area, and histological analysis showed incipient microaneurysms in retinas of gal-fed marmosets. Findings from this study indicate that hyperhexosemia can trigger retinal vascular changes similar to those seen in human DR including ME and microaneurysms. The striking similarities between the marmoset retina and the human retina, and the exceptionally small size of the monkey, offer significant advantages to this primate model of DR.
INTRODUCTION

DR and particularly diabetic macular edema (DME) are leading causes of blindness (1-3). Currently, the lack of an efficient animal model of DR has been a major drawback in understanding the pathogenesis of DR and developing novel treatment strategies. The common marmoset (*Callithrix jacchus*) is a new world primate, which is an unusually small primate that is phylogenetically close to humans, survives well in captivity, weighs about 400 g, and has relatively large eyes that are half the size of the human eye with similar retinal anatomy including the presence of macula. The small size of the primate permits convenient handling and low maintenance costs. Furthermore, the successful creation of transgenic marmosets offers unique opportunities in the way we could study DR (4). Although marmosets have been used as animal models of various diseases (5-7), to date the feasibility of using the marmoset as a model of DR has not been studied (8-10). Here, we have investigated whether hyperglycemic marmosets develop retinal vascular lesions and evaluated its validity as a model of DR.
MATERIALS AND METHODS

Marmoset handling

Four marmosets were kept on a 30% gal-rich diet (Laboratory Diets, Richmond, IN) in an animal colony at the New England Primate Research Center, Harvard Medical School for a period of 2.5 years under an experimental protocol approved by Harvard Medical School’s Standing Committee on Animals as well as the tenets of the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Two marmosets were maintained in parallel as normal controls. HbA1c levels were measured every 3 months using a kit (Glyc-Affin; Pierce, Rockford, IL) and fasting blood glucose levels were assessed daily using a glucometer (OneTouch Ultra-meter, Johnson & Johnson, New Brunswick, NJ).

Retinal trypsin digest (RTD), and assessment of endothelial cell (EC)/pericyte ratio, AC and PL, and vessel tortuosity

The RTD method was performed as previously described (11). Briefly, whole retinas were dissected, fixed in 10% formalin, and placed in 0.15M glycine buffer overnight. The following day, retinas were immersed in 3% trypsin (Becton-Dickinson, San Jose, CA) at 37°C for approximately 3 hours to allow for glial digestion. The nonvascular mass was gently removed with a brush (Ted Pella, Redding, CA) and the isolated retinal vascular network mounted onto silane-coated slides and stained with periodic acid Schiff and hematoxylin. At least ten random areas were photographed using the Nikon microscope attached to the Nikon F1 digital camera. The images were assessed for EC/pericyte ratio, number of AC and PL, and microaneurysms. Vessel tortuosity was assessed by the distance factor formula based on arc to chord ratio (12; 13).
Electron microscopy

The retinas were fixed in 2.5% glutaraldehyde in 0.1M cacodylate buffer and dehydrated using osmium tetroxide, ethanol, and propylene oxide (EMS, Hatfield, PA). The tissues were then embedded in an Epon-Araldite. Sectioning was performed at 60-70 nm using a microtome (LKB Ultratome Nova, Bromma, Sweden) and sections were placed on a copper grid, stained with 4% uranyl acetate in methanol and viewed under a transmission electron microscope (Philips, Electron Optics, Eindhoven, Netherlands). At least ten random images of retinal capillaries were photographed and examined according to the orthogonal intercept method for BM thickness (14).

Measurement of retinal capillary BM thickness

BM thickness was determined as described previously (14). Briefly, a 20-spoke radial grid was superimposed over a retinal capillary transverse section, and BM thickness was noted at each point a spoke intersected the BM. The width of the two thinnest BM portions surrounding each vessel was also measured and entered into the overall assessment excluding overlapped areas of BM from ECs and pericytes.

Assessment of retinal vascular permeability

To assess retinal vascular leakage, marmosets were anesthetized by injecting IM ketamine (25 mg/kg) followed by 0.5 ml of 5% FITC-BSA through the saphenous vein. The marmosets were sacrificed with an overdose of intravenous pentobarbital and their eyes enucleated. Retinas were imaged under fluorescence microscope (Diaphot; Nikon, Tokyo, Japan) attached to a Nikon F1

OCT imaging

Retinal imaging was performed at 3-4 month intervals with a high-speed spectral domain OCT (SDOCT; Optovue Inc., Fremont, CA), which was slightly modified to adjust for the shorter visual axis of the marmoset eye (~12 mm). Following anesthesia, the pupils were dilated with 1 drop of AK-Dilate 2.5% phenylephrine hydrochloride (Akorn, Inc. Buffalo Grove, IL) and 1 drop of 1% Tropicamide (Bausch & Lomb, Tampa, FL).

Western Blot analysis

Total protein was isolated from the marmoset retinas and Western Blot analysis was performed as described previously (15). Briefly, retinas were placed in lysis buffer (25 mM Tris, 1 mM EDTA, 0.1% Triton X-100), homogenized, and total protein extracted. Equal amounts of protein was electrophoresed, and the gel transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA), blocked with 5% non-fat dry milk, and exposed to rabbit anti-human fibronectin (FN) antibody overnight (1:1000) (Millipore, Billerica, MA). Following washes, the membrane was incubated with goat anti-rabbit secondary antibody (Cell Signaling, Billerica, MA) (1:3000) for 1 hour, exposed to Immun-Star Chemiluminescent Protein Detection System (Bio-Rad) and signals captured on an X-ray film (Fujifilm, Tokyo, Japan). Equal protein loading was confirmed by β-actin densitometric analysis.
Statistical Analysis

Data was analyzed for statistical significance using a two-tailed Student’s t-test to compare the specific differences between groups. Data is presented as mean ± standard deviation. In all analyses, statistical significance was determined when p < 0.05.

Results

Marmoset eye and its structural characteristics of the retinal capillary network

The marmoset is an unusually small primate weighing 387±12 g and the adult marmoset eyeball is approximately 13 mm in diameter (Fig. 1A, 1B). The macula is located two and a half disc diameters from the optic disc with a prominent foveal avascular zone (Fig. 1C, 1D). Additionally, a prominent depression in the central area of the foveal pit, and the retinal arteriolar and venular arcade around the macula as well as the vessel tortuosity indices resembled those of the human retina. Furthermore, the 1:0.9 ratio of ECs to pericytes in the marmoset retinal capillaries is similar to that of the human retina.

Blood glucose and HbA1c level

The fasting blood glucose measurements and the HbA1c levels showed significant increase in the gal-fed marmosets (215±64 mg/dl, 8.7±1.8%) compared to those of the control marmosets (98±18 mg/dl, 5.03±1.9%).
Histological assessment of microaneurysms, AC, and PL in the marmoset retinal capillaries

In two of the four gal-fed marmosets, small vascular outpouchings were observed indicating incipient microaneurysms (Fig. 1E). The number of AC and PL was significantly increased in gal-fed marmosets compared to those of control marmosets (221±35% of control, p <0.01, and 250±46% of control, p <0.02, respectively) (Fig. 1F).

Vascular BM thickening and overexpression of FN in the marmoset retina

Retinal vascular BM thickening was significantly increased in the gal-fed marmosets compared to those of control marmosets (147±34 nm vs. 244±30 nm, p <0.02) (Fig. 2). Western blot analysis indicated significant overexpression of FN in the retinas of gal-fed marmosets compared to those of control marmosets (169±14% of normal, P<0.05).

Assessment of vascular permeability in the marmoset retina

In the retinal vessels of control marmosets, limited fluorescence intensity was visible, whereas in the retinal vessels of the gal-fed marmosets, areas of extravasation were evident, indicative of increased vascular permeability. The presence of a number of retinal capillaries exhibiting vascular permeability in the gal-fed marmosets (Fig. 3) clearly indicated compromised BRB.

Assessment of retinal thickness and macular edema using OCT

The OCT scans of normal marmosets provided baseline values for the normal macular thickness, which was 156±19.7 µm in the fovea and 248±11.4 µm in the juxtafoveal area (Fig. 4A-C) with 232, 228, 242 and 237 µm in the temporal, nasal, superior and inferior orientations, respectively.
Of the four gal-fed marmosets, one showed signs of cystoid retinal edema (Fig. 4F) with an overall foveal thickness at 210 µm in the OD and 206 µm in the OS. A juxtafoveal increase with 292, 280, 288, 281 µm temporally, nasally, superiorly and inferiorly, respectively, with indications of intraretinal fluid accumulation also noted. Interestingly, the discontinuation of the photoreceptor layer, indicative of intraretinal fluid accumulation representing early stages of edematous retina (Fig. 4D), and the choroidal effusion in the OD (Fig. 4D, 4E) were increasingly evident towards the end of the study (Fig. 4A-C, Fig. 4E). The foveal thickness in the OS of the same marmoset was 209 µm with a juxtafoveal thickness of 285, 291, 292, 277 µm (temporally, nasally, superiorly, inferiorly). Furthermore, the alterations at the RPE level over a period of 3-4 months suggest fluid accumulation and an intraretinal alteration resembling edema with possible tractional components was also observed (Fig. 4D-F).

The second marmoset exhibited increased foveal thickness in the OD (203 µm) but relatively less in the OS (178 µm). The juxtafoveal orientations revealed 256, 265, 258, 269 µm of the OD and 260, 261, 268, 256 µm of the OS (temporal, nasal, superior and inferior). The foveal thickness in the OD of the third marmoset reached 238 µm. Due to technical difficulties, only the temporal and nasal orientations were recorded in the OD (273 and 288 µm, respectively). The temporal, nasal, superior and inferior orientation revealed 282, 281, 295, 281 µm of the OD and 237, 248, 248, 241 µm of the OS, respectively. The fourth gal-fed marmoset exhibited similar macular thickening.

Discussion
In this study, we investigated the feasibility of the gal-fed marmoset as a primate model of DR. The presence of a macula with a foveal avascular zone, the characteristic vascular pattern and tortuosity, and the ratio of ECs to pericytes resemble the human anatomy. Additionally, the increased retinal capillary BM thickening, overexpression of FN, increased number of AC and PL, presence of microaneurysms, increased vascular permeability, and the development of ME in the gal-fed marmosets, resemble characteristics of human DR.

Several groups have attempted to develop primate models of DR using large primates and have observed some signs of DR (16; 17). However, these models require about 15 years of diabetes before exhibiting retinal vasculopathy making them impractical and unsuitable for research purposes (18). The slow progression of DR, the long gestational periods, and the low birth rates in these primates also pose formidable hurdles in developing them as primate models of DR (19).

An intriguing aspect in animal models of diabetes involving different species is the variable duration of diabetes or hyperglycemia needed to induce the development of retinal vascular lesions (20-22). This may be attributable to the longevity of the animal and its body mass index (BMI) (23). Studies indicate that diabetic animals with shorter lifespan and/or smaller BMI tend to develop retinal vascular lesions within a relatively short period following induction of diabetes (19). It is currently unknown how long marmosets would take to develop retinal vascular lesions under diabetic condition. It is noteworthy that the marmoset eyeball is relatively large with respect to its body size. Furthermore, in comparison to the large primates, maintenance cost of marmosets and risk in handling are significantly lower. Additionally, studies have documented similarity in gene expression changes related to DR, such as retinal FN overexpression present in
gal-fed rats, diabetic rats, and diabetic humans (15; 24; 25) lending credence to the validity of the marmoset model of DR. However, further studies are warranted in establishing these findings in a diabetic marmoset model.

In conclusion, the gal-fed marmoset not only exhibits histological and biochemical changes associated with DR but also shows hyperhexosemia alone can promote the development of ME. The availability of the marmoset genome sequence (GenBank Assembly ID: GCA_000004665.1) offers a significant advantage in designing gene modulatory strategies for the treatment of DME as well as other macular complications. Moreover, the ability to monitor retinal changes through OCT would permit longitudinal studies at a significantly low cost. Taken together, the gal-fed marmoset offers a unique opportunity to study the pathogenesis of DR in a setting that is a significant step closer to human DR.
Acknowledgements

The research was supported by NEI, NIH EY018218 (SA.R.) and in part by a departmental grant from the Massachusetts Lions Eye Research Fund (SA.R.). A.C. conducted experiments, performed protein analysis, OCT imaging, contributed to manuscript writing and reviewed the manuscript. SU.R. assisted with the animal studies, conducted studies related to protein analysis, OCT imaging, contributed to manuscript writing and reviewed the manuscript. E.B. conducted studies related to protein analysis, permeability assay. K.M. provided housing facilities for the marmosets, veterinarian care, tissue samples, and reviewed the manuscript. L.W. provided veterinarian care, procurement of tissue samples and reviewed the manuscript. S.A.R. planned and supervised the studies, analyzed data, and wrote the manuscript. S.A.R. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. There are no conflicts of interest for all authors.
Figure Legends

Figure 1. Marmoset eye, macula, and retinal capillary network surrounding macular area, and acellular capillaries, pericyte loss and microaneurysms in galactose-fed marmoset. (A) Marmoset is an unusually small primate. (B) An adult marmoset eyeball is approximately 13 mm in diameter. (C) Marmoset macula (white arrow) is present approximately two and a half disc diameter distance from the optic disc. (D) A prominent foveal avascular zone is located in the macula (red arrow). Note, the relative size and location of macula with respect to the optic disc in the marmoset retina is strikingly similar to that of the human macula. (E) Effect of hyperhexosemia on retinal vascular lesions characteristic of diabetic retinopathy. Representative images of retinal capillary network show increased number of acellular capillaries and pericyte loss in the retinas of galactose-fed marmosets compared to those of control marmosets. Incipient microaneurysms were detected in the galactose-fed marmosets. Magnification bar: 20 uM. (F) Graphical illustrations showing significant increase in the number of (i) acellular capillaries and (ii) pericyte ghosts in the retinas of galactose-fed marmosets compared to those of control marmosets. *P<0.05.

Figure 2. Capillary BM thickness in retinas of marmoset. BM thickness (arrows) in transverse sections of a retinal capillary from (A) normal marmoset (B) corresponding enlarged view; (C) gal-fed marmoset (D) corresponding enlarged view. Magnification Bar: 1um. (E) Graphical illustration of capillary BM thickness in retinas of normal and gal-fed marmoset. *P<0.02.
Figure 3. Retinal vascular permeability in galactose-fed marmoset. Representative areas showing FITC fluorescence in vessels of whole-mount retinas. Areas of intense FITC leakage from extravasation were observed in the retinas of gal-fed marmosets compared to those of control normoglycemic marmosets. In the gal-fed marmoset retinas, some vessels showed vascular leakage at specific points of the vessel (arrow).

Figure 4. Representative retinal OCT scans of a gal-fed marmoset and a normal marmoset and pathological changes in the retinas of gal-fed marmosets. Significant thickening of the foveal and the juxtafoveal area, indicative of intraretinal fluid accumulation, was observed in retinas of gal-fed marmosets. Color heat images show increased foveal thickness in retinas of (A) a gal-fed marmoset compared to the foveal thickness of (B) a normal marmoset. (C) Graphical illustration showing macular and foveal thickness in retinas of control and galactose-fed marmosets. *p<0.03 **p<0.02. (D-F) Representative images of the macular area showing alterations in RPE, photoreceptor layer, and a incipient cystoid retinal edema in gal-fed marmosets. (D) Fluid accumulation in the choroid (red arrow) and discontinuation at the photoreceptor layer (white arrow) representing early stages of edematous retina was observed in a gal-fed marmoset. (E) Retinal thickening was accompanied by changes in RPE and retinal photoreceptor layer starting at fifteenth month of galactose feeding. (F) An OCT scan of the central retina showing a hyporeflective space just above the RPE level indicative of intraretinal fluid accumulation (arrowhead).
References

Figure 1

A. Adult Marmoset Eye
 - Eye Diameter: 1.3 cm
 - Eye Color: Dark brown
 - Body wt: 385 g

B. Scale: 0
 - 1
 - 2
 - 3

C. Macula

D. Microaneurysm

E. Normal Capillaries
 - Acellular Capillaries
 - Pericyte Ghost
 - Microaneurysm

F. Bar chart showing:
 - Number of acellular capillaries (% of control)
 - Number of pericyte ghosts (% of control)

 - Normal
 - Gal-fed

 * indicates significant difference.
Figure 2

A. Normal BM thickness
B. Gal-fed BM thickness

E. Bar graph showing BM thickness (nanometers) for Normal and Gal-fed groups. The Gal-fed group has a significantly higher BM thickness compared to the Normal group, indicated by an asterisk.
Figure 3

[Image of normal and Gal-fed conditions]
Figure 4

A

B

C

D

E

F

Month 15

Photoreceptor discontinuation

Month 16

Potential break at RPE level