Title:

Treatment of Obese Insulin-Resistant Mice with an Allosteric MAPKAPK2/3 Inhibitor

Lowers Blood Glucose and Improves Insulin Sensitivity

Short Running Title:

MAPKAPK2/3 inhibitor and insulin sensitivity

Authors:

Lale Ozcan1*, Xiaoming Xu1, Shi-Xian Deng1, Devram S. Ghorpade1, Tiffany Thomas3,4, Serge Cremers1,3,4, Brian Hubbard5, Michael H. Serrano-Wu5, Matthias Gaestel6, Donald W. Landry1

and Ira Tabas1,2,3*

Affiliations:

1Department of Medicine

2Department of Physiology and Cellular Biophysics

3Department of Pathology and Cell Biology

4Irving Institute for Clinical and Translational Research Columbia University, New York, NY, USA

5Tabomedex Biosciences, Boxford, MA, USA

6Department of Biochemistry, Hannover Medical School, Hannover, Germany

*Corresponding authors: lo2192@columbia.edu and iat1@columbia.edu
ABSTRACT

The prevalence of obesity-induced type 2 diabetes (T2D) is increasing worldwide and new treatment strategies are needed. We recently discovered that obesity activates a previously unknown pathway that promotes both excessive hepatic glucose production (HGP) and defective insulin signaling in hepatocytes, leading to exacerbation of hyperglycemia and insulin resistance in obesity. At the hub of this new pathway is a kinase cascade involving calcium/calmodulin-dependent protein kinase II (CaMKII), p38α mitogen-activated protein kinase, and MAPKAPK2/3 (MK2/3). Genetic-based inhibition of these kinases improves metabolism in obese mice. Here, we report that treatment of obese insulin resistant mice with an allosteric MK2/3 inhibitor, compound (cmpd) 28, ameliorates glucose homeostasis by suppressing excessive HGP and enhancing insulin signaling. The metabolic improvement seen with cmpd 28 is additive with the leading T2D drug, metformin, but it is not additive with dominant-negative MK2, suggesting an on-target mechanism of action. Allosteric MK2/3 inhibitors represent a potentially new approach to T2D that is highly mechanism based, has links to human T2D, and is predicted to avoid certain adverse effects seen with current T2D drugs.
INTRODUCTION

Type 2 diabetes (T2D) and its complications constitute an enormous public health problem worldwide and are an important cause of morbidity and mortality in modern society. Despite significant progress in our understanding of the pathophysiology of T2D, its incidence and prevalence continue to increase in epidemic proportions (1). Thus, new approaches are needed to contain this pandemic. Because T2D is a progressive disease, current treatment options are limited, and there is a need for combination therapy to improve long-term glycemic control.

Excessive hepatic glucose production (HGP) is a key defect found in T2D (2), and it is driven in large part by chronic hyperglucagonemia coupled with insufficient hepatic insulin action (3; 4). Moreover, through excess nutrient intake and perturbations in endoplasmic reticulum (ER) calcium, obesity induces ER stress in both pre-clinical models of T2D and humans, and this leads to perturbations in insulin signaling (5-7). However, therapeutic translation of these findings has been difficult. Drugs that antagonize glucagon action potently lower blood glucose and HbA1c in humans with T2D, but adverse effects on plasma lipids have limited their development (8-10). So-called chemical chaperones can relieve ER stress and diabetes in obese mice, but their mechanism of action is not well understood, limiting their therapeutic translation (11).

We recently reported that excessive glucagon signaling in obesity activates a kinase cascade in hepatocytes that, via two separate downstream signaling branches, promotes increased hepatic glucose production (HGP) and, through ER stress, defective insulin signaling (12; 13) (Fig. S1). This pathway, therefore, links obesity to the two cardinal features of T2D: hyperglycemia and selective insulin resistance. The kinases include calcium/calmodulin-dependent protein kinase II (CaMKII); p38α mitogen-activated protein kinase (MAPK); and MAPKAPK2 (MK2) and the
highly homologous MAPKAPK3 (MK3), which are downstream targets of p38α. The pathway is activated in the livers of both hyperphagic and diet-induced models of obesity. Our evidence to date suggests that CaMKII-activated p38α MAPK is the kinase responsible for the downstream effects leading to metabolic disturbance in obesity (12, 13) (unpublished data).

Nonetheless, genetic inhibition of any of the kinases in obese mice markedly improves blood glucose and insulin resistance, because CaMKII is upstream of p38, and MK2/3 inhibition destabilizes and thereby suppresses p38 activity (14; 15). The molecular mechanistic underpinnings of these in vivo results could be recapitulated in studies using primary hepatocytes from both mice and humans (12, 13).

The discovery of this new pathway suggested that it may be a novel therapeutic target for the treatment of T2D. We focused on the common kinase hub so that both excessive HGP and defective insulin signaling could be treated. However, direct p38 inhibitors have adverse effects when tested in animal models (14; 16; 17), and while CaMKII inhibitors are a theoretical target option, the only CaMKII inhibitors published to date are ATP-competitive, which limits their specificity. We therefore turned our attention to MK2/3, because highly specific non-ATP-competitive ("allosteric") MK2/3 inhibitors have been developed recently, including a potent inhibitor called compound (cmpd) 28 (18), and MK2/3 inhibition suppresses p38 activity in a manner that avoids the adverse effects of direct p38 inhibition (14; 15). Here we show that treatment of obese mice with cmpd 28 leads to a significant improvement in glucose metabolism via a mechanism that is consistent with inhibition of the aforementioned biochemical pathway. Importantly, this improvement is additive with metformin, one of the most effective therapeutics for treating T2D. Collectively, these results help validate MK2/3 as a therapeutic target and MK2/3 inhibitors as treatment for obesity-associated T2D.
MATERIALS and METHODS

Reagents and Antibodies

Forskolin, TNFα and metformin were from Sigma. Anti-phospho-Akt, anti-Akt, anti-phospho-hsp25, anti-hsp25, anti-FoxO1, anti-nucleophosmin antibodies were from Cell Signaling; anti-Trb3 was from Millipore and anti-β-actin antibody was from Abcam. Adeno-T222A-MK2 was purchased from Cell Biolabs Inc. Cmpd 28 was synthesized according to the synthetic route reported by Huang (18). Briefly, commercially available 5-(4-cyanophenyl) furan-2-carboxylic acid and tert-butyl 4-(4-aminophenyl) piperazine-1-carboxylate were coupled with EDC and HOBT to provide the corresponding amide in quantitative yield. The alkylation of the amide with 2-bromobenzyl bromide under basic conditions gave the N-alkylated product in 96% yield. Suzuki coupling of the resulting compound with 4-methoxy-3-pyridine boronic acid gave the coupling product in 63% yield. Deprotection of the Boc protecting group with TFA provided the TFA salt of cmpd 28. The resulting TFA salt was converted to the HCl salt by adding 2M HCl in ether followed by solvent evaporation. All of the compounds were purified by column chromatography and characterized by NMR and LC/MS. The final product, cmpd 28, showed a purity of >98% by LC/MS analysis.

Mouse Experiments

Mk2^{−/−}Mk3^{+/−} mice were created as described previously (19). Ob/ob mice were obtained from Jackson Labs. For diet-induced obese (DIO) mice studies, wild type (WT) male mice were fed a high-fat diet with 60% kcal from fat (Research Diets) and maintained on a 12-h-light-dark cycle. Recombinant adenovirus (0.5-3 X 10⁹ plaque-forming units/mice) was delivered by tail vein injection, and experiments were commenced after 5-7 days. Mice were treated by daily intraperitoneal injections of 0.2 mg kg^{−1} cmpd 28 in sterile water, 200 mg kg^{−1} metformin in
sterile phosphate-buffered saline (PBS), or water or PBS vehicle control. Fasting blood glucose was measured in mice that were fasted for 4-6 h, with free access to water, using a glucose meter. Glucose tolerance tests were performed in overnight-fasted mice by assaying blood glucose at various times after i.p. injection of glucose (0.5 g kg\(^{-1}\) for ob/ob). Plasma insulin levels were measured using ultra-sensitive mouse insulin ELISA Kit (Crystal Chem). Insulin tolerance tests were performed in 5 h-fasted mice by assaying blood glucose at various times after i.p. injection of insulin (2 IU kg\(^{-1}\) for ob/ob). Pyruvate tolerance tests were carried out with an intraperitoneal injection of 2 g kg\(^{-1}\) body weight pyruvate after 17 h of fasting. Blood glucose levels were measured over the following 2 hr. To determine the plasma and liver distribution of cmpd 28, blood and liver tissues samples were collected from individual ob/ob mice at 5, 15, 30, 60, and 120 min after i.p. injection of cmpd 28 at a dose of 0.2 mg kg\(^{-1}\) (n=3). Plasma and liver homogenates were extracted with acetonitrile/methanol (4:1), resolubilized with 25% methanol, and injected onto an Agilent Poroshell 120 EC-C18 column linked to an Agilent 1290 Infinity UHPLC running at 45°C at 0.5 ml/min. Cmpd 28 was detected with an Agilent 6410 tandem mass spectrometer with positive electrospray ionization monitoring the +H quantifying ion transition 570.2 to 330.2 (collision energy= 45V; Fragmentor=210V) and qualifying ion transition 570.2 to 196 (collision energy= 81V; Fragmentor=210V). Plasma that was spiked with known concentrations of cmpd 28 was used to create a standard curve, which was linear from 10 ng/ml to 100 ng/ml. The MS conditions were as follows: gas temperature = 300°C; gas flow= 13 L/min; nebulizer = 60 psi; and capillary = 3000V. Animal studies were performed in accordance with the Columbia University Institutional Animal Care and Use Committee.
Portal Vein Insulin Infusion and Protein Extraction from Tissues

Following 5 h food withdrawal, mice were anesthetized, and insulin (1 IU kg\(^{-1}\) for DIO and 2 IU kg\(^{-1}\) for \(ob/ob\)) or PBS was injected into mice through the portal vein. Three minutes after injection, tissues were removed, frozen in liquid nitrogen, and kept at −80°C until processing. For protein extraction, tissues were placed in a cold lysis buffer (25 mM Tris-HCl pH 7.4, 1 mM EGTA, 1 mM EDTA, 10 mM Na\(_4\)P\(_2\)O\(_7\), 10 mM NaF, 2 mM Na\(_3\)VO\(_4\), 1% NP-40, 2 mM PMSF, 5 µg/ml leupeptin, 10 nM okadaic acid, and 5 µg/ml aprotinin). After homogenization on ice, the tissue lysates were centrifuged, and the supernatant fractions were used for immunoblot analysis.

Primary Hepatocytes (HCs)

Primary mouse HCs were isolated from 8- to 12-week-old mice as described previously (12). For most experiments, the HCs were cultured in DMEM containing 10% fetal bovine serum, treated as described in the figure legends, and then incubated for 5 h in serum-free DMEM.

Glucose Production in Primary HCs

Glucose production assays were carried out as described (12). Briefly, after primary mouse HCs were harvested and cultured as described above, the cell culture medium was switched to glucose- and phenol-free DMEM (pH 7.4) supplemented with 20 mM sodium lactate, 2 mM sodium pyruvate, and 10 µM forskolin. After incubation for the designated times, 100 µl medium was collected, and the glucose content was measured using a colorimetric glucose assay kit (Abcam). The data were normalized to the total protein amount in the whole-cell lysates.

Immunostaining

The pancreas was harvested from the mice at time of sacrifice and fixed in 10% neutral-buffered formalin for 24 h and then embedded in paraffin. Sections (5 mm) were incubated overnight
with rabbit anti-glucagon (1:200; Cell Signaling) and mouse anti-insulin (1:200; Abcam). After incubation with fluorescently labeled anti-rabbit and anti-mouse secondary antibodies, the sections were viewed using an Olympus IX 70 fluorescence microscope.

Immunoblotting and RT-qPCR

Immunoblot and RT-qPCR assays were performed as previously described (12). Nuclear extraction from liver was performed using the Nuclear Extraction Kit from Panomics according to the manufacturer’s instructions. Total RNA was extracted from HCs using the RNeasy kit (Qiagen). cDNA was synthesized from 2 µg total RNA using oligo (dT) and Superscript II (Invitrogen).

G6Pc Promoter-Luciferase Assay

WT mouse embryonic fibroblasts (MEFs) were transfected with a construct encoding nucleotides -1227 to +57 of the human G6Pc promoter fused to luciferase. MEFs were treated for 8 h with 0.15 mM forskolin in serum-free medium prior to lysis and analysis of luciferase activity. The luciferase units (RLU) were normalized to the untreated cells in each group.

Kinase profiling

The protein kinases listed in Table 1 were tested against 10 µm Cmpd 28 by Carna Biosciences using mobility shift assay or IMAP as described by the company, with the ATP concentration for each kinase adjusted for its Km. Percent inhibition was calculated based on a 0%-inhibition value (complete reaction mixture minus cmpd 28) and a 100%-inhibition value (reaction mixture minus enzyme).

Statistical Analysis
All results are presented as mean ± SEM. P values were calculated using the Student’s t-test for normally distributed data and the Mann-Whitney rank sum test for non-normally distributed data.

RESULTS

Cmpd 28 is an effective inhibitor of MK2/3 activity in primary hepatocytes and inhibits forskolin-induced G6Pc expression.

We first tested the ability of cmpd 28 to suppress MK2/3 activity in primary hepatocytes (HCs) by monitoring phosphorylation of the MK2/3 substrate, heat-shock protein 25 (hsp25) (15). For this purpose, we used TNFα as a potent stimulus of MK2/3 activation and found that cmpd 28 markedly decreased hsp25 phosphorylation (**Fig. S2A**). We then turned our attention to HCs exposed to palmitate, because palmitate mimics features of HC pathophysiology seen in obesity (20; 21). Cmpd 28 effectively suppressed hsp25 phosphorylation in this model as well (**Fig. 1A**).

Our previous work showed that inhibition of hepatic p38 or MK2/3 by genetic targeting or dominant-negative constructs decreases glucagon-induced nuclear FoxO1 and thereby inhibits the expression of the gluconeogenic and glycogenolytic gene, glucose-6-phosphatase (**G6pc**) (12). We therefore asked whether cmpd 28 could suppress the ability of forskolin, which mimics glucagon by activating adenylate cyclase, to induce **G6pc** in primary HCs. We found that the drug potently suppressed both forskolin-induced hsp25 phosphorylation and **G6pc** expression, with a maximum effect at 500 nM (**Fig. 1B-C**). To determine if the mechanism was through MK2/3 inhibition, we conducted a parallel experiment comparing wild-type (WT) and **Mk2**+/−**Mk3**+/− HCs (22). As expected, forskolin-induced p-hsp25 and **G6pc** mRNA induction were decreased in **Mk2**+/−**Mk3**+/− vs. WT HCs, and the suppressive actions of cmpd 28 and MK2/3 deficiency were not additive (**Fig. 1D**). These data are consistent with the premise that cmpd 28
acts in the same pathway as MK2/3. As another assay, we used WT mouse embryonic fibroblast (MEFs) transfected with a luciferase fusion construct encoding the FoxO1 binding sites of the \(G6Pc \) promoter (23; 24), and we found that induction of luciferase through forskolin treatment was significantly blunted by cmpd 28 (Fig. 1E). Consistent with these data, cmpd 28 also inhibited forskolin-induced glucose production in primary HCs (Fig. 1F). Of note, cmpd 28 had no effect on cell viability under these conditions as determined by TUNEL assay (Fig. S2B). We next profiled cmpd 28 for kinase selectivity by screening against a panel of 26 different protein kinases at a concentration of 10 \(\mu M \). As expected, cmpd 28 inhibited both MK2 and MK3, and it had no or little effect on the other kinases assayed (Table 1). Most importantly, cmpd 28 had no effect on CaMKII at the doses where it can efficiently inhibit forskolin-induced p-hsp25 (Fig. S2C). These combined data show that cmpd 28 selectively inhibits MK2/3 and effectively lowers the expression of \(G6pc \), which is consistent with the proposed mechanism of the drug's action, namely, inhibition of the CaMKII-MK2-FoxO1-\(G6pc \) pathway (12).

Cmpd 28 treatment improves glucose homeostasis in obese mice

To investigate the effect of MK2/3 inhibition on hepatic glucose metabolism in the setting of obesity, we treated \(ob/ob \) mice with i.p. injections of cmpd 28 (0.2 mg kg\(^{-1}\) body weight) or vehicle control. A dose range was estimated from \textit{in vitro} potency data (18), and a pilot experiment showed that 8 days of daily i.p. treatment with 0.2 mg kg\(^{-1}\) cmpd 28 effectively lowered fasting blood sugar in obese mice, whereas 0.02 mg kg\(^{-1}\) had little effect, and no further effect was observed at 2 mg kg\(^{-1}\). Another pilot experiment showed that a single i.p. injection of 0.2 mg kg\(^{-1}\) body weight of cmpd 28 led to peak plasma concentrations of \(~45\) ng ml\(^{-1}\) after 5 min, followed by significant levels of cmpd 28 accumulating in the liver, peaking at 15 min. The plasma half-life of cmpd 28 was \(~1-2\) h, and the liver half-life was \(~2.75\) h. After 3 wks of once-
daily i.p. injections of ob/ob mice with 0.2 mg kg$^{-1}$ cmpd 28, MK2/3 activity in the liver was inhibited as evidenced by reduced p-hsp25 levels (Fig. 2A). During the course of the treatment, cmpd 28 had no effect on body weight or food intake (Fig. S3A-B), and plasma lipids showed a non-significant trend toward lower values (Fig. S3C-E). Most importantly, cmpd 28 significantly lowered blood glucose and circulating plasma insulin levels of ob/ob mice as early as three days after treatment (Fig. 2B-C), and both endpoints remained lower during the 3-wk course of the study (Fig. 2D-F). Drug treatment improved blood glucose response to glucose challenge and enhanced glucose disposal in response to insulin stimulation (Figure 2G-H), which indicates an increase in insulin sensitivity. Drug-treated mice also displayed lower plasma glucose in response to pyruvate, which is a measure of hepatic glucose production (Fig. 2I). Cmpd 28 had similar effects in diet-induced obese mice (DIO), i.e., it lowered fasted and fed blood glucose and plasma insulin in the absence of any change in body weight (Fig. 3).

In order to assess whether the metabolic benefits of cmpd 28 in obese mice were due to its ability to inhibit MK2/3, we transduced ob/ob mice with adenoviral constructs encoding dominant-negative T222A-MK2 (25) or control LacZ, and then treated the mice with cmpd 28 or vehicle for 7 days. We found that both dominant-negative MK2 and cmpd 28 treatment led to a decrease in blood glucose and plasma insulin (Fig. 4) in a manner that was not additive. These combined results demonstrate that MK2/3 suppression by either an allosteric inhibitor or by a dominant-negative construct lowers blood glucose and improves insulin sensitivity in two models of obesity-induced insulin resistance.

We previously showed that genetic inhibition of the CaMKII-p38-MK2 pathway in the livers of obese mice has two beneficial actions: (a) improvement of insulin-induced Akt phosphorylation by suppressing the endogenous Akt inhibitor Trb3; and (b) suppression of gluconeogenic gene
induction by decreasing nuclear FoxO1 (12; 13). We therefore assessed the effect of cmpd 28 on these parameters in the livers of obese mice. Cmpd 28 treatment increased insulin-induced Akt activation and decreased the levels of Trb3, nuclear FoxO1, and mRNAs of three FoxO1-target genes; G6pc, Pck1, and Igfbp1 (Fig. 5A-C). Drug treatment also increased insulin-induced Akt activation in skeletal muscle (Fig. 5D), which is consistent with an improvement in systemic glucose metabolism, whereas examination of islet morphology and function did not reveal significant effects after 2 weeks of treatment (Fig. 5E). These collective data support the conclusion that cmpd 28 improves metabolism in obese mice by blocking HGP and improving insulin signaling.

The metabolic improvement by cmpd 28 and metformin in obese mice is additive.

Metformin is the most commonly used drug for non-insulin-dependent T2D (26). We therefore tested whether the beneficial metabolic effects of cmpd 28 would be additive with metformin by treating ob/ob mice with vehicle (control), metformin alone, cmpd 28 alone, or metformin plus cmpd 28. Metformin and cmpd 28 each decreased blood glucose, and, most importantly, the effect was additive (Fig. 6A). Similar results were obtained when the endpoint was suppression of plasma insulin as a measure of insulin sensitization (Fig. 6B). Moreover, there was also an additive effect on the lowering of hepatic G6pc mRNA (Fig. 6C). Note that neither treatment affected body weight in these mice (Fig. 6D). Thus, at the doses used in this experiment, cmpd 28 has additive beneficial metabolic effects with metformin in obese mice.

DISCUSSION

Obesity-induced T2D is a major health concern and a leading driver of cardiovascular disease, kidney failure, retinal disease, and other maladies in modern societies. The demand for new
drugs is enormous as the prevalence of diabetes continues to grow worldwide. In particular, there is a critical need for safe and effective oral drugs that work in combination with the current leader, metformin, or that can be used in metformin-intolerant patients (27). Our recent work indicated that genetic-mediated suppression of the hepatic CaMKII-MK2 pathway safely improves both hyperglycemia and insulin resistance in mouse models of obesity. Here we provide evidence that an allosteric MK2/3 inhibitor, cmpd 28, improves glucose homeostasis and insulin sensitivity in obese mice. Cmpd 28 and DN-MK2 were equally effective in lowering blood glucose and plasma insulin, and they did this in a non-additive manner, suggesting an on target mechanism of this MK2/3 inhibitor. Moreover, the mechanism of cmpd 28 differs from that of metformin and other T2D drugs, and cmpd 28 is additive with metformin in obese mice.

Pre-clinical and clinical studies with p38 inhibitors have shown that they are hepatotoxic, which is related to a p38-mediated feedback loop involving TAK1 and JNK activation (28). This feedback loop is not activated by complete MK2/3 deficiency or MK2-I's (15). Moreover, whereas p38α knockout mice are embryonic lethal (29), mice totally lacking both MK2 and MK3 (Mk2−/−Mk3−/−) show no overt adverse effects (19). They are protected from septic shock; inflammatory, ischemic, neurodegenerative diseases; and certain types of cancer. Importantly, hypercholesterolemic Mk2−/− mice on an Ldlr−/− background had lower atherosclerotic lesion development, indicating a beneficial effect of MK2 inhibition on atherosclerosis development (30). In addition, MK2 inhibitors are being investigated for their anti-inflammatory and possible anti-tumor properties (31). Finally, MK2 plays a pathological role in heart failure, suggesting a possible beneficial effect of MK2/3 inhibitors for this T2D-driven disease as well (25).

Despite the possibility of multiple beneficial effects of MK2/3 inhibition, drug development in the T2D area would focus on partial suppression of MK2/3 activity in the liver, which was the
case for cmpd 28 based on the p-hsp25 and PK data. Interestingly, complete and germline deletion of MK2 in all tissues was recently reported to worsen metabolism in mice, which was attributed to proinflammatory polarization of adipose tissue macrophages (ATMs) and decreased expression of the glucose transporter GLUT4 (32). Whether these effects were secondary to compensatory changes in response to complete germline deletion of MK2 or other mechanisms remains to be investigated, but we found no M1 polarization of ATMs or reduction in adipose tissue GLUT4 levels in mice treated with the MK2/3 inhibitor, cmpd 28, compared with controls (Fig. S4).

Mice completely lacking MK2 are also more susceptible to a high (but not lower) inoculum of *Listeria monocytogenes* compared to WT mice, but they otherwise show a remarkably intact host defense mechanism, including resistance to endotoxic shock (33). In this light, we recently discovered that MK2 inhibition promotes an inflammatory resolution response (34), and responses of this nature can actually bolster host defense (35; 36).

As mentioned above, diabetes in obese humans and mice is known to be exacerbated by excess glucagon action at the level of the hepatocyte, and attempts to lower glucagon action using glucagon receptor antagonists (GRAs) have recently gained extensive interest (37-39). GRAs effectively lower blood glucose in humans with T2D, but GRAs increase plasma LDL (10; 40; 41), which has presented a significant block to their development as T2D drugs. Interestingly, cmpd 28 does not raise blood lipids and even shows a trend toward lowering. Future studies will be required to further validate this point, i.e., through direct comparison of GRAs and allosteric MK2/3-Is, and to elucidate the mechanism. Indeed, although mice with siRNA-mediated blockade of the glucagon receptor demonstrated increased hepatic lipid synthesis (10), the mechanism of the lipid-raising effect of GRAs in humans is not known. In
theory, it is possible that MK2/3-Is, by targeting a downstream node of glucagon receptor
signaling, avoid the hyperlipidemic effect of GRAs or that MK2/3-Is have an additional effect
that neutralize the lipid-raising effects of GR pathway inhibition. The importance of this issue is
related to the increased risk of cardiovascular disease in patients with T2D, leading the FDA to
require clinical trials to assess the cardiovascular safety of all new T2D drugs. The potential
protective effects of MK2/3 inhibition on atherosclerosis and heart failure (above) may indicate
that cardiovascular safety may not be an issue with MK2/3 inhibitors and may even represent an
additional benefit of this class of drugs.

AUTHOR CONTRIBUTIONS

L.O. and I.T. designed research; L.O., X.X., S.X.D., D.S.G., T.T. performed research; S.C., M.G.
and D.W.L. contributed new reagents/analytic tools; L.O., X.X., S.X.D., D.S.G., T.T., S.C.,
B.H., M.S.W., D.W.L., I.T. analyzed data; and L.O., M.G. and I.T. wrote the paper.

ACKNOWLEDGMENTS

This work was supported by American Heart Association Scientist Development Grant
(11SDG5300022) and NYONRC Pilot and Feasibility Grant (DK26687) to L.O., NIH grants
HL087123 and HL075662 to I.T. and SFB 566 B12 from Deutsche Forschungsgemeinschaft to
M.G. Cmpd 28 synthesis was performed by the chemists at the Organic Chemistry Collaborative
Center of Columbia University and supported by the New York STEM Cell Program (Contract
NO. C0267152) and the National Center for Advancing Translational Sciences, National
Institutes of Health (UL1 TR000040). L.O. is the guarantor of the study, had full access to all
the data in the study and takes responsibility for the integrity of the data and the accuracy of the
data analysis. Authors L.O., B.H., M.S.W and I.T. are in the group of cofounders of Tabomedex
Biosciences LLC, which is developing inhibitors for the treatment of type 2 diabetes. All other authors declare no conflict of interest.

REFERENCES

34. Fredman G, Ozcan L, Spolitu S, Hellmann J, Spite M, Backs J, Tabas I: Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-
activated kinase pathway. Proceedings of the National Academy of Sciences of the United States of America 2014;111:14530-14535
35. Serhan CN: Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014;510:92-101

Table 1. Compound 28 selectively inhibits MK2 and MK3.

The indicated protein kinases were screened against 10 µM of cmpd 28 using mobility shift assay or IMAP. The data are presented as percent inhibition.

<table>
<thead>
<tr>
<th>Kinase</th>
<th>% Inhibition Compound 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXL</td>
<td>5.3</td>
</tr>
<tr>
<td>JAK1</td>
<td>8.1</td>
</tr>
<tr>
<td>JAK2</td>
<td>5.6</td>
</tr>
<tr>
<td>JAK3</td>
<td>-6.2</td>
</tr>
<tr>
<td>MER</td>
<td>5.9</td>
</tr>
<tr>
<td>SRC</td>
<td>9.2</td>
</tr>
<tr>
<td>AMPKα1/β1/γ1</td>
<td>1.5</td>
</tr>
<tr>
<td>AMPKα2/β2/γ2</td>
<td>13.8</td>
</tr>
<tr>
<td>CK1γ1</td>
<td>-9.2</td>
</tr>
<tr>
<td>CK1γ2</td>
<td>-3.2</td>
</tr>
<tr>
<td>CK1γ3</td>
<td>-2.8</td>
</tr>
<tr>
<td>Erk1</td>
<td>1.2</td>
</tr>
<tr>
<td>Erk2</td>
<td>5.1</td>
</tr>
<tr>
<td>IKKα</td>
<td>4.8</td>
</tr>
<tr>
<td>IKKb</td>
<td>5.8</td>
</tr>
<tr>
<td>IKKe</td>
<td>-2.1</td>
</tr>
<tr>
<td>JNK1</td>
<td>-2.7</td>
</tr>
<tr>
<td>JNK2</td>
<td>6.5</td>
</tr>
<tr>
<td>JNK3</td>
<td>2.5</td>
</tr>
<tr>
<td>MAPKAPK2</td>
<td>98.6</td>
</tr>
<tr>
<td>MAPKAPK3</td>
<td>98.2</td>
</tr>
<tr>
<td>MAPKAPK5</td>
<td>59.2</td>
</tr>
<tr>
<td>p38α</td>
<td>3.8</td>
</tr>
<tr>
<td>p38β</td>
<td>4.7</td>
</tr>
<tr>
<td>p38γ</td>
<td>-3.1</td>
</tr>
<tr>
<td>p38δ</td>
<td>-5.6</td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

Fig. 1. Cmpd 28 is an effective inhibitor of MK2/3 activity in liver cells and inhibits forskolin-induced hsp-25 phosphorylation and \(G6Pc \) expression. (A) Primary HCs from WT mice were pretreated with either vehicle (Con) or 500 nm of cmpd 28 (Cmpd 28) for 1 h followed by incubation with either BSA control or 0.3 mM palmitate for 6 h. Lysates were probed for p-hsp25, hsp25, and β-actin by immunoblot. Densitometric quantification of the immunoblot data is shown in the graph (* p<0.05; mean ± SEM). (B) Primary HCs from WT mice were pretreated with either vehicle (Con) or indicated concentrations of cmpd 28 (Cmpd 28) for 1 h, followed by co-treatment with cmpd 28 ± forskolin for 1 h. Lysates were probed for p-hsp25, hsp25, and β-actin by immunoblot. (C) Primary HCs from WT mice were serum-depleted overnight and then pretreated with either vehicle (Con) or indicated concentrations of cmpd 28 (Cmpd 28) for 1 h, followed by co-treatment with cmpd 28 ± forskolin for 5 h. RNA was assayed for \(G6pc \) mRNA by RT-qPCR. (*p < 0.05; **p < 0.01; mean ± SEM). (D) HCs from WT and \(Mk2^{-/-}\text{Mk3}^{+/-} \) mice were serum-depleted overnight and then pretreated with either vehicle (Con) or 500 nm cmpd 28 (Cmpd 28) for 1 h, followed by co-treatment with cmpd 28 ± forskolin for 5 h. RNA was assayed for \(G6pc \) mRNA by RT-qPCR (differing symbols indicate p < 0.05; mean ± SEM). The protein lysates from a parallel set of cells were probed for p-hsp25, hsp25, and β-actin by immunoblot. (E) WT MEFs were transfected with a luciferase fusion construct encoding nucleotides -1227 to +57 of the \(G6Pc \) promoter, which contains the FoxO1 binding sites of the promoter region. Relative luciferase activity was measured after pre-treatment with vehicle (Con) or cmpd 28 (Cmpd 28) for 1 h, followed by co-treatment with cmpd 28 ± forskolin for 8 h (differing symbols indicate p < 0.05; mean ± SEM). (F) Primary HCs from WT mice were serum-depleted overnight and then pretreated with either vehicle (Con)
or 500 nm cmpd 28 (Cmpd 28) for 1 h, followed by co-treatment with cmpd 28 and forskolin for the indicated times in serum- and glucose-free media. The glucose in the medium was assayed and normalized to total cell lysate (* p< 0.05; mean ± SEM).

Fig. 2. Cmpd 28 treatment improves glucose homeostasis in ob/ob mice. 10 week-old ob/ob mice were injected i.p. with 0.2 mg kg\(^{-1}\) body weight of cmpd 28 (Cmpd 28) or vehicle (Con) each day for 3 weeks (n=5 each group). The mice were then assayed for (A) hepatic p-hsp25, total hsp25, and β-actin by immunoblot. (B-C) 10 week-old ob/ob mice were injected i.p. with 0.2 mg kg\(^{-1}\) body weight of cmpd 28 (Cmpd 28) or vehicle (Con) each day for 2 weeks (n=6 each group). Blood glucose and plasma insulin levels after a 6-h fast at day 3 are shown. (D-H) The mice in (A) were assayed for the following parameters: 6-h fasting blood glucose levels at day 10 (D); fed blood glucose levels 1 h after drug administration at day 7 (E); 6-h fasting plasma insulin levels at day 10 (F); glucose tolerance test on day 8 (G); and insulin tolerance test on day 12 (H) (*p < 0.05; **p < 0.01; mean ± SEM). (I) The mice in (B) were assayed for blood glucose after a pyruvate challenge on day 9 is shown (*p < 0.05; **p < 0.01; mean ± SEM).

Fig. 3. Cmpd 28 treatment improves glucose homeostasis in DIO mice. 17-week-old DIO mice were injected i.p. with 0.2 mg kg\(^{-1}\)body weight of cmpd 28 (Cmpd 28) or vehicle (Con) each day for 3 weeks (n=6 each group). The mice were then assayed for fasting blood glucose (A); fed blood glucose (B); fasting plasma insulin (C); fed plasma insulin (D); and body weight (E) (*p < 0.05; mean ± SEM).

Fig. 4. The metabolic improvement by cmpd 28 and dominant-negative MK2 in obese mice is not additive. 10 week-old ob/ob mice were transduced with adeno-LacZ or adenoT222A-MK2 (dominant-negative), which inhibits hepatic MK2. Mice were then treated i.p. with 0.2 mg
kg\(^{-1}\) body weight of cmpd 28 (Cmpd 28) or vehicle (Con) for 7 days (n=5 each group). After a 6 h fast, the mice were assayed for fasting blood glucose (A) and plasma insulin (B) (different symbols indicate p < 0.05; mean ± SEM).

Fig. 5. Cmpd 28 treatment improves insulin-induced Akt phosphorylation and lowers the expression of gluconeogenic genes in obese mice. 10 week-old *ob/ob* mice were injected i.p. with 0.2 mg kg\(^{-1}\) body weight of cmpd 28 (Cmpd 28) or vehicle (Con) each day for 3 weeks (n=5 each group). (A) The mice were fasted for 6 h and then injected with 2 IU/kg insulin through the portal vein. After 3 mins, livers were harvested, and total liver extracts were assayed for p-Akt, Akt, Trb3 and β-actin by immunoblot. Densitometric quantification of the immunoblot data is shown in the graph (* p< 0.05; mean ± SEM). (B) Nuclear protein isolated from above mice was probed for FoxO1 and nucleophosmin (Np) by immunoblot. (C) RNA was extracted from liver and assayed by RT-qPCR for *G6pc*, *Pck1*, and *Igfbp1* mRNA (*p < 0.05; **p < 0.01; mean ± SEM). (D) 17-week-old DIO mice were injected i.p. with 0.2 mg kg\(^{-1}\) body weight of cmpd 28 (Cmpd 28) or vehicle (Con) each day for 3 weeks (n=6 each group). The mice were fasted for 5 h and then injected with 1 IU/kg insulin through the portal vein. After 4 mins, skeletal muscle was harvested, and total skeletal muscle extracts were assayed for p-Akt, Akt and β-actin by immunoblot. Densitometric quantification of the immunoblot data is shown in the graph (* p< 0.05; mean ± SEM). (E) Pancreatic islets from *ob/ob* mice treated with 0.2 mg kg\(^{-1}\) body weight of cmpd 28 (Cmpd 28) or vehicle (Con) each day for 2 weeks were immunostained for insulin (green) and glucagon (red).

Fig. 6. The metabolic improvement by cmpd 28 and metformin in obese mice is additive. 10 week-old *ob/ob* mice were treated i.p. with vehicle (Con), 200 mg kg\(^{-1}\) body weight of metformin (Met), 0.2 mg kg\(^{-1}\) body weight of cmpd 28 (Cmpd 28), or both compounds for 14
days (n=5 each group). The mice were assayed for (A) fasting blood glucose; (B) plasma insulin; (C) hepatic \textit{G6pc} mRNA expression levels and (D) body weight (*p < 0.05, **p < 0.01; mean ± SEM).
Figure 1

(A) Western blot analysis of phospho-hsp25, hsp25, and β-actin in control (Con) and compound 28 (Cmpd 28) treated samples.

(B) Relative G6Pc mRNA expression in response to compound 28 and forskolin (Fors) treatment.

(C) Relative G6Pase-luciferase activity in control (Con), forskolin (Fors), and compound 28 (Cmpd 28) treated samples.

(D) Relative G6Pc mRNA expression in wild type (WT) and M2K2−/Mk3−/− mice with or without compound 28 treatment.

(E) Relative glucose production in control (Con), forskolin (Fors), and compound 28 (Cmpd 28) treated samples at 5 h, 8 h, and 17 h.
Figure 2

(A) Immunoblot showing expression of hsp25, p-hsp25, and β-actin in Con and Cmpd 28 groups.

(B) Blood glucose (fasted) in Con and Cmpd 28 groups.

(C) Plasma insulin (fasted) in Con and Cmpd 28 groups.

(D) Blood glucose (fasted) for Cmpd 28 group.

(E) Blood glucose (fed) for Con and Cmpd 28 groups.

(F) Plasma insulin (fasted) for Con and Cmpd 28 groups.

(G) Blood glucose (% of initial) over time for glucose injection in Con and Cmpd 28 groups.

(H) Blood glucose (% of initial) over time for insulin injection in Con and Cmpd 28 groups.

(I) Blood glucose (mg/dl) over time for pyruvate injection in Con and Cmpd 28 groups.
Figure 5

A (liver)
<table>
<thead>
<tr>
<th>ins:</th>
<th>Con</th>
<th>Cmpd 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

p-Akt (ser 473)
Akt
Trb3
β-actin

B (liver)
<table>
<thead>
<tr>
<th>Con</th>
<th>Cmpd 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoxO1</td>
<td>Np</td>
</tr>
</tbody>
</table>

C (liver)

<table>
<thead>
<tr>
<th>G6Pc</th>
<th>Pck1</th>
<th>Igfbp1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
</tbody>
</table>

D (skeletal muscle)
<table>
<thead>
<tr>
<th>ins:</th>
<th>Con</th>
<th>Cmpd 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

p-Akt (ser 473)
Akt
Trb3
β-actin

E (pancreas)
Con
Cmpd 28
Fig. S1. **Pathway leading to exacerbation of glucose and insulin metabolism in the setting of obesity.** Based on the studies in Refs. 12 and 13 and in Wang et al. (2012) Nature 485(7396):128-32, obesity leads to an increase in cytoplasmic calcium in hepatocytes by glucagon-induced activation of the IP3 receptor. Inhibition of the calcium ATPase, SERCA, probably amplifies this effect (Ref. 7). The increase in cytoplasmic calcium activates CaMKII, which in turn activates p38 and MK2/3. Kinase activation triggers two downstream branches. In the first branch, phosphorylation of nuclear FoxO1 leads to its nuclear translocation and induction of genes that promote hepatic glucose production. In the second branch, the kinase pathway activates PERK by suppressing ATF6 and p58IPK. PERK activation, through ATF4 and Trb3, suppresses insulin receptor signaling. The combination of these two pathways exacerbates hyperglycemia and selective insulin resistance.

Fig. S2. **Cmpd 28 inhibits TNFα- and forskolin-induced hsp-25 phosphorylation without an effect on cell viability.** (A) Primary HCs from WT mice were pretreated with either vehicle (Con) or 500 nm of cmpd 28 (Cmpd 28) for 1 h and then treated with 5 µg/ml of TNFα for 20 mins. Lysates were assayed for p-Thsp25, hsp25, and β-actin by immunoblot. (B) Primary HCs from WT mice were pretreated with either vehicle (Con) or 500 nm cmpd 28 (Cmpd 28) for 1 h, followed by co-treatment with cmpd 28 ± forskolin for 5 h. The cells were stained for TUNEL, counterstained with DAPI (nuclei), and quantified as percent TUNEL-positive cells. (C) Primary HCs from WT mice were pretreated with either vehicle (Con) or the indicated concentrations of cmpd 28 (Cmpd 28) for 1 h, followed by co-treatment with cmpd 28 ± forskolin for 1 h. Lysates were probed for p-CaMKII, CaMKII, p-hsp25, hsp25, and β-actin by immunoblot.
Fig. S3. Cmpd 28 treatment does not alter body weight, food intake, or plasma lipids. 10 week-old ob/ob mice were injected i.p. with 0.2 mg kg$^{-1}$ body weight of cmpd 28 (cmpd 28) or vehicle (Con) each day for 3 weeks (n=5 each group). The mice were then assayed for (A) body weight; (B) food intake; (C) plasma triglyceride; (D) total cholesterol; and (E) non-esterified free fatty acid levels.

Fig. S4. Cmpd 28 treatment does not change visceral adipose tissue inflammatory markers or GLUT4 levels. 17-week-old DIO mice were injected i.p. with 0.2 mg kg$^{-1}$ body weight of cmpd 28 (cmpd 28) or vehicle (Con) each day for 3 weeks (n=6 each group). (A) RNA was extracted from visceral adipose tissue and assayed by RT-qPCR for $Tnfa$, $Il6$, $Il1b$ and $Il10$ mRNA. (B) Protein lysates were assayed for Glut4 and β-actin by immunoblot.
Figure S1

CaMKII

p38–MK2/3

↑ cytosolic Ca\(^{2+}\)\(_i\)

↑ hepatic glucose production

↑ nuclear FoxO1

exacerbates hyperglycemia and hyperinsulinemia

IP3R activation

excess glucagon signaling

insulin resistance

Obesity

↓ SERCA activity

alter ER lipids in liver

PERK activation

ATF4

TRB3

defective insulin signaling

↓ ATF6

↓ p58\(^{IPK}\)

Diabetes
Figure S2

A

<table>
<thead>
<tr>
<th></th>
<th>Con</th>
<th>Cmpd 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFα</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>p-hsp25</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>hsp25</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>β-actin</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

B

% TUNEL-positive cells

Con | Con + Fors | Cmpd 28 | Cmpd 28 + Fors

C

<table>
<thead>
<tr>
<th></th>
<th>Con</th>
<th>Cmpd 28 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fors:</td>
<td>-</td>
<td>0.1 0.5 2.5 10</td>
</tr>
<tr>
<td>p-CaMKII</td>
<td>-</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>CaMKII</td>
<td>-</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>p-hsp25</td>
<td>-</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>hsp25</td>
<td>-</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>β-actin</td>
<td>-</td>
<td>+ + + + + + +</td>
</tr>
</tbody>
</table>
Figure S4

A

<table>
<thead>
<tr>
<th>Protein</th>
<th>Control (Con)</th>
<th>Cmpd 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tnf-a</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Il-6</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Il-1b</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Il-10</td>
<td>0.6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

B

Western blot analysis showing Glut4 and β-actin expression levels in cells treated with control (Con) and Cmpd 28.