Title: Relationship between Left Ventricular Structural and Metabolic Remodelling in Type 2 Diabetes Mellitus

Authors:

Eylem Levelt¹,², MBBS MRCP; Masliza Mahmod¹, MBChB MRCP DPhil; Stefan K. Piechnik¹, PhD; Rina Ariga¹, MBBS BSc(Hons) MRCP; Jane M. Francis¹, DCR(R) DNM; Christopher T Rodgers¹, MChem DPhil; William T Clarke¹, MChem; Nikant Sabharwal³, BSc BM BCh DM FRCP; Jurgen E. Schneider¹, PhD; Theodoros D. Karamitsos¹,², MD PhD; Kieran Clarke², PhD; Oliver J. Rider¹, BMBCMRCP DPhil; Stefan Neubauer¹, MD FRCP FACC FMedSci

Autor Affiliations

¹ University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
² Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
³ Department of Cardiology, John Radcliffe Hospital, Oxford, United Kingdom
⁴ 1st Department of Cardiology, Aristotle University, Thessaloniki, Greece

Corresponding author: Stefan Neubauer MD FRCP FACC FMedSci

Complete Address: University of Oxford Centre for Clinical Magnetic Resonance Research, (OCMR), John Radcliffe Hospital, Oxford OX3 9DU, UK

Fax +44 (0)1865 222077
Tel +44 (0)1865 226829

Email stefan.neubauer@cardiov.ox.ac.uk

Short title: Levelt; Diabetes, Concentric LV remodelling and Steatosis

Word count: 3448
Abstract

Concentric left ventricular (LV) remodelling is associated with adverse cardiovascular events and is frequently observed in patients with type 2 diabetes mellitus (T2DM). Despite this, the cause of concentric remodelling in diabetes, per se, is unclear, but may be related to cardiac steatosis and impaired myocardial energetics. Thus, we investigated the relationship amongst myocardial metabolic changes and LV remodelling in T2DM. Forty-six non-hypertensive T2DM patients and twenty matched controls underwent cardiovascular magnetic resonance to assess LV remodelling (LV mass to LV end diastolic volume ratio-LVMVR), function, pre- and post-contrast tissue characterisation using T1 mapping, 1H, 31P-magnetic resonance spectroscopy for myocardial triglyceride content (MTG) and phosphocreatine to ATP ratio (PCr/ATP) respectively. When compared to body mass index and blood pressure matched controls, diabetes was associated with: concentric LV remodelling, higher MTG, impaired myocardial energetics and impaired systolic strain indicating a subtle contractile dysfunction. Importantly, cardiac steatosis independently predicted concentric remodelling and systolic strain. Extracellular volume fraction was unchanged, indicating absence of fibrosis. In conclusion, cardiac steatosis may contribute to LV concentric remodelling and contractile dysfunction in diabetes. As cardiac steatosis is modifiable, strategies aimed at reducing myocardial triglyceride may be beneficial in reversing concentric remodelling and improving contractile function in the diabetic heart.

Key Words:

- Diabetes
- myocardial steatosis
• magnetic resonance imaging

• magnetic resonance spectroscopy
Introduction

Diabetes mellitus (DM) is associated with an increased risk of both heart failure\(^1\) and cardiovascular mortality\(^2\), even in the absence of coronary artery disease (CAD). The reasons for this, are not clear, but one candidate mechanism that has emerged is concentric LV hypertrophy, which is frequently observed in patients with type 2 diabetes mellitus (T2DM)\(^3\),\(^4\), preceding the development of clinical heart failure\(^5\) and shown to be a strong predictor of adverse cardiovascular events\(^6\).

Concentric remodelling of the LV is characterised by an increased LV mass to LV end diastolic volume ratio (LVMVR) but normal LV mass index\(^7\). The precise underlying mechanism of concentric LV remodelling in patients with DM, in the absence of significant arterial hypertension, remain unclear. One potential driver of LV concentric remodelling in patients with T2DM is cardiac steatosis, where excess myocyte accumulation of triglyceride leads to hypertrophic signaling\(^8\),\(^9\). The link between lipotoxicity and concentric LV remodelling has been demonstrated in animal models of excess lipid accumulation\(^7\),\(^10\) and in humans\(^11\) and particularly patients with generalised lipodystrophy\(^12\), who exhibit severe concentric LV hypertrophy and significant cardiac steatosis. Proton (\(^1\)H) magnetic resonance spectroscopy (MRS) allows for the non-invasive measurement of cardiac triglyceride content. Using this technique cardiac steatosis has been shown to be a prominent and early feature of diabetic cardiomyopathy\(^13\).

In addition, impaired myocardial high-energy phosphate metabolism is another important feature of diabetic cardiomyopathy\(^14\). \(^{31}\)Phosphorus magnetic resonance spectroscopy (\(^{31}\)P-MRS) allows for cardiac energetics to be measured non-invasively. Whether a relationship between concentric LV remodelling and impaired myocardial energetics exists in T2DM is
unknown, but given the link between PCr/ATP ratio and mortality15, this is worthy of investigation.

Interstitial fibrosis has also been implicated in the pathogenesis of LV hypertrophy16 and has been identified in the more advanced stages of diabetic cardiomyopathy17. The role of interstitial fibrosis in the pathogenesis of LV hypertrophy in stable/early diabetic cardiomyopathy is much less clear as abnormal myocyte hypertrophy rather than fibrosis appears to predominate in the early stages18. Cardiac magnetic resonance (CMR) T1 mapping for extracellular volume (ECV) quantification allows for non-invasive quantification of fibrosis19, correlating closely with collagen proportionate area on histology20.

Thus, we used CMR imaging, combined with 1H-MRS and 31P-MRS, to assess the relationship amongst LV concentric remodelling, cardiac fibrosis, steatosis and myocardial energetics in T2DM, and compared the results to non-diabetic age, body mass index (BMI) and blood pressure matched controls.

Research Design and Methods

The study complies with the Declaration of Helsinki, it was approved by the National Research Ethics Committee (REC Ref 13/SW/0257) and informed written consent was obtained from each participant. All patients were recruited from the general practice surgeries in Oxfordshire, United Kingdom. Forty-six stable T2DM (diagnosed according to the World Health Organization criteria21) and 20 controls were recruited to the study.

Inclusion and Exclusion Criteria

The diabetes population assessed in this study is comprised of T2DM patients only, with stable disease and no known diabetes complications. Subjects were excluded if they had a
history of cardiovascular disease, chest pain, smoking, hypertension (resting systolic blood pressure (BP) >140 mmHg and diastolic BP >90 mmHg), contraindications to MR imaging, ischemic changes on 12-lead ECG, or renal impairment (estimated glomerular filtration rate below 30 mL/min). T2DM participants were excluded if they had HBA1C >9% or were taking insulin.

Anthropometric Measurements

Height and weight were recorded and BMI calculated. Blood pressure was recorded as an average of 3 supine measures taken over 10 minutes (DINAMAP-1846-SX, Critikon Corp). Fasting venous blood was drawn for glucose, triglyceride, HBA1c, renal function and free fatty acids (FFA), full blood count tests as previously described\(^2^2\). Fasting insulin was also recorded in all diabetic patients. In agreement with the diabetes management guidelines\(^2^3\) spot (random) urine sample albumin levels and the albumin: creatinine ratio was assessed in the majority of patients with T2DM, (~69%, n=32).

Coronary computed tomographic angiography

An optional scan of coronary computed tomographic angiography (CCTA) were offered to diabetic patients to exclude obstructive coronary artery disease (>50% of luminal stenosis). CCTA scans were performed on 64-slice CT scanner (GE Healthcare, Discovery 690) in accordance to performance guidelines from the Society of Cardiovascular Computed Tomography\(^2^4\). Participants received beta-blockade (intravenous Metoprolol) and sublingual GTN (if necessary and safe) prior to the scan to achieve a heart rate of <65 beats per minute. During the CTCA acquisition, 80ml of iodinated contrast (Visipaque, GE Healthcare, Princeton, NJ) was injected followed by a 50ml saline flush.
Echocardiography

Transthoracic echocardiography was performed with the subjects at rest using commercially available ultrasound transducer and equipment (Philips iE33 Medical Systems, The Netherlands). All images were digitally stored on hard disks for offline analysis (EchoPAC version 108.1.5, GE-Vingmed). Measurements of LV diastolic function were performed according to the guidelines of the American Society of Echocardiography. The following diastolic indices were obtained: transmitral early (E) and late (A) diastolic velocities and E/A ratio.

Cardiac Magnetic Resonance Protocol

All LV imaging were performed on a 3.0 Tesla MR system (Siemens, Germany). Images for LV volumes and diastolic function were acquired using a steady state free precession (SSFP) sequence and analysed using cmr42© (Circle Cardiovascular Imaging Inc, Canada) as previously described. To determine mid-ventricular peak systolic circumferential strain and diastolic strain rate, myocardial tagging was performed as described previously. Tagged images were analysed using Cardiac Image Modeller software (CimTag2D v7 Auckland Medical Research, Auckland, New Zealand). Semi-automated analysis was performed by aligning a grid to the myocardial tagging planes at end-diastole.

T1 mapping and ECV quantification was performed using a Shortened Modified Look-Locker Inversion Recovery (ShMOLLI) sequence. T1 maps were generated from the mid short-axis images as described previously. Consistent with earlier reports on ECV estimation, we measured pre-contrast and post-contrast myocardial and blood T1 values, and the estimation of ECV and lambda was based on multipoint regression, incorporating all
available pre-contrast and post-contrast points, to increase the robustness of the estimates by increasing the number of underlying data points. ECV was calculated as: (1 – hematocrit).

For calculation of post-contrast T1 values, the post-contrast T1 map acquired at 15 min was utilized for ECV calculation. Baseline and 15 min post-contrast images were contoured by two observers (EL and SKP) in a blinded fashion, using dedicated software, as previously described\(^{31}\).

Late gadolinium enhancement (LGE) imaging was performed to exclude presence of previous silent myocardial infarction or regional fibrosis and it was acquired according to standard clinical protocols and analyzed qualitatively.

\(^{31}\)P-MR Spectroscopy

\(^{31}\)P MR spectroscopy was performed to obtain the rest PCr/ATP from a voxel placed in the mid-ventricular septum, with the subjects lying prone with their heart over the centre of the \(^{31}\)P heart/liver coil in the isocentre of the magnet as previously described\(^{32}\). \(^{31}\)P-MRS post processing analysis was performed using in house software within Matlab version R2012a (Mathworks, Natick, Massachusetts) as previously described\(^{32}\).

Cardiac \(^1\)H-MRS

Myocardial \(^1\)H-MR spectra were obtained from the mid-interventricular septum as previously described\(^{33}\). Spectroscopic acquisitions were performed using ECG trigger at end-expiration to minimize motion artefacts. Water-suppressed spectra were acquired to measure myocardial lipid content, and spectra without water suppression were acquired as an internal standard. Spectra were analyzed using Matlab and the AMARES algorithm in Java-based Magnetic Resonance User Interface as previously described\(^{33}\). Myocardial lipid
content was calculated as a percentage relative to water: (signal amplitude of lipid/signal amplitude of water)×100.

Statistical Analysis

All statistical analysis was performed with commercially available software packages (IBM SPSS Statistics, version 20). All data were checked for normality using the Kolmogorov–Smirnov test and presented as mean ± standard deviations, and median (interquartile range) as appropriate. Normally distributed data sets were analysed with the independent Student t test. The chi-square test was used to compare discrete data as appropriate. Bivariate correlations were performed using Pearson’s or Spearman’s method as appropriate. To assess the associations concentric remodeling and metabolic parameters, linear regression across all subjects was performed. Linearity was assessed visually. Variables with P<0.05, and the strongest relationship with concentric remodelling were then included in multiple linear regression models by a stepwise selection method to assess the "best" subset in predicting cardiovascular remodelling. Significance was assumed at P < 0.05.

Results

Participant Characteristics

Demographic, clinical, and biochemical data are shown in Table 1. Forty-six patients (24 male, mean age 55 ± 9 years, body mass index (BMI) 29.6 ± 5.7 kg/m²) with T2DM, median diabetes duration 7 years [IQR: 1-8] and mean HBA1c of 7.5 ± 1.2%, and twenty controls (9 male, mean age 54 ± 10 years, BMI 28.6 ± 2.8 kg/m²) were studied. Patients were of similar age, gender, weight, resting heart rate and blood pressure with
controls. As expected, diabetes was associated with higher fasting blood glucose, HBA1c, free fatty acids (FFA), triglyceride levels and lower high-density lipoprotein cholesterol. About 74% of the diabetic patients were on statin therapy, hence the lower total cholesterol and low-density lipoprotein cholesterol levels were detected in patients compared to controls. Urine albumin: creatinine ratio and urine albumin results were recorded in 32 patients with T2DM in the study and all were within normal limits.

CCTA

Of the 46 patients with T2DM, in 76% significant CAD was excluded by CCTA and the remaining 11 did not consent to having CCTA.

The Effect of Diabetes on LV Geometry and Function

In agreement with previous reports, diabetes was associated with concentric LV remodelling. Although LV mass was not significantly different between T2DM and controls ($P = 0.183$), LV end-diastolic volume was 16% smaller in T2DM ($P = 0.004$). As a result, T2DM was associated with increased LV mass to volume ratio (LVMVR) by 31%, $(0.97 \pm 0.17, \text{ vs } 0.74 \pm 0.14\text{g/ml}, P < 0.001; \text{ Figure 1, A; Table 2})$, suggesting significant concentric remodelling. Importantly, this concentric remodelling was not correlated with blood pressure, which was within normal limits in both groups, ($R = -0.002, P = 0.989$).

Despite normal LV ejection fraction (LVEF), mid-ventricular peak systolic circumferential strain was impaired in patients with T2DM (T2DM $14.5 \pm 3.5\%$, vs controls $18.3 \pm 2.6\%, P < 0.001$; Figure 1B), indicating subtle contractile dysfunction. The differences in diastolic strain rate between the T2DM patients and controls did not reach statistical significance, but there was a strong trend (T2DM $60 \pm 24\text{s}^{-1}$, vs controls $65 \pm 13\text{s}^{-1}, P = 0.057$). LVMVR showed a
negative correlation with peak systolic circumferential strain (R = -0.430, P < 0.001), but not with diastolic strain rates (R = -0.121, P = 0.341). The echocardiographic assessment of mitral inflow E/A ratio was significantly lower in T2DM patients (T2DM 0.99 ± 0.25, vs controls 1.17 ± 0.38, P = 0.038). In-keeping with the dissociation of diastolic strain rates and the myocardial triglycerides, there was no significant correlation between the mitral inflow E/A ratio and the myocardial triglyceride (R = -0.135, P = 0.393).

Cardiac Steatosis, Myocardial Energetics, Concentric Remodeling and Strain

As described before, diabetes was associated with an almost two-fold elevation of myocardial triglyceride (T2DM 1.13 ± 0.78, vs controls 0.64 ± 0.52, P = 0.017; Figure 1, C) and was also associated with ~18% reduction in the myocardial PCr/ATP ratio (T2DM 1.68 ± 0.28, vs controls 2.05 ± 0.34, P < 0.001; Figure 1, D). When investigating all study subjects, there was a positive correlation between the MTG and concentric LV remodelling (R = 0.41, P = 0.003) and a negative correlation between myocardial energetics and LVMVR (R = -0.30, P < 0.020). Stepwise multivariable regression revealed myocardial triglyceride (β = 0.473, P = 0.001) to be the only independent predictor of concentric remodelling (overall R^2 of the model = 0.304, P = 0.001). Furthermore, myocardial triglyceride also negatively correlated with systolic strain (R = -0.40, P = 0.003), and it was also the only independent predictor of systolic strain (β = -0.400, P = 0.003) on stepwise multivariable regression analysis. However, there was no correlation between diastolic strain rate and steatosis (R = 0.158, P = 0.263). Figure 2 shows representative examples of cardiac 31P-MRS, 1H-MRS and cine images in a control and a patient with T2DM.
There was no significant difference in native myocardial T1 values between the T2DM patients and controls (T2DM 1194 ± 32 ms, vs controls 1184 ± 28 ms; $P = 0.23$). Similarly, ECV did not differ between the groups (T2DM 29 ± 2%, vs controls 29 ± 3%, $P = 0.773$), suggesting absence of interstitial fibrosis. On visual assessment of the LGE images, no areas of enhancement indicative of scarring in either ischaemic or non-ischaemic patterns were identified in any of the participants.

Discussion

Concentric LV remodelling is an adverse prognostic marker of cardiovascular events34, and is linked to contractile dysfunction35. Using CMR and MRS we show here that diabetes, in the absence of hypertension, is associated with concentric LV remodelling and we confirm the findings of previous studies, showing pronounced cardiac steatosis13 and decreased energetics$^{14, 36}$ in patients with T2DM. We have also shown that despite normal LVEF, peak systolic strain was significantly impaired in diabetics, indicating a subtle contractile dysfunction, which was negatively correlated with both reduced myocardial energetics and concentric LV remodelling. Importantly, we have shown here for the first time, that the degree of myocardial triglyceride accumulation is predictive of concentric LV remodelling and cardiac contractile function in patients with T2DM. The correlation of myocardial concentric remodelling with myocardial triglyceride accumulation and peak systolic strain in diabetic hearts suggest a link between these; however, the causality of these relationships will need to be investigated in future studies. From these initial cross-sectional studies, we clearly cannot determine whether the observed correlations between myocardial...
triglyceride and LVMVR and function are causal. As myocardial steatosis has been shown to be modifiable37, 38, this provides the potential for novel therapies aimed at reducing concentric LV remodelling and improving cardiac function in diabetes. Finally, as no significant difference in ECV and native (pre-contrast) T1 mapping was found between the patients with T2DM and controls, it is unlikely that interstitial fibrosis plays a significant role in the pathogenesis of concentric LV remodelling in this well controlled, stable T2DM population. This suggests that the process of concentric remodelling is not limited to poorly controlled diabetics, or those with renal dysfunction17, and occurs in the absence of significant systemic hypertension.

Microalbuminuria is strongly associated with risk for cardiovascular disease, but the nature of this link remains controversial and poorly understood39. In this study, in patients with stable T2DM, free of coronary artery disease, no association between the urine albumin excretion and the LV remodelling, contractile dysfunction, cardiac energetics or steatosis was observed.

The diabetes population assessed in this study is comprised of highly selected T2DM patients, with stable disease only and no other significant comorbidities. Although this has the advantage of better demonstrating the pathophysiological relationships between T2DM and cardiovascular remodelling it does reduce the broader applicability to "real world" populations where additional co-morbidities are commonplace. Given the fact we have shown significant abnormalities in myocardial energetics, myocardial triglyceride deposition, myocardial geometry and peak systolic strain in a stable diabetes population, similar or amplified findings may potentially be expected in diabetic patients with more advanced cardiovascular disease, or other significant comorbidities such as hypertension. Future
studies are needed to confirm this. Furthermore, whether or not the subtle changes in cardiac geometry, energetics and lipid deposition will predict adverse cardiovascular outcomes in a diabetes cohort remains to be definitively demonstrated by longitudinal studies.

The LVMVR is calculated by dividing the left ventricular mass by the left ventricular end diastolic volume, as an index of wall thickness to cavity size. LVMVR lacks a well-defined normal reference range, therefore age and sex-matched healthy volunteers without co-existent coronary artery disease, hypertension, aortic stenosis or other forms of heart disease were recruited and scanned contemporaneously. LVMVR in this group was $0.74 \pm 0.10 \, \text{g/mL}$ and consistent with previous larger studies of >700 healthy volunteers, carried out in our centre40. The LVMVR in the control group in this small cross sectional study is however lower than the average demonstrated in a multi-ethnic study of atherosclerosis (MESA). This is likely the result of the fact that the MESA population study of >5000 participants did not exclude subjects with hypertension, impaired fasting glucose, diabetes, smoking and other causes of concentric hypertrophy 41. In addition, in MESA participants were on average 6-8 years older than the participants in our study, and only around 10% had diabetes, making comparisons with this larger population based study more difficult.41

Relationship between LV Geometric Remodelling and Cardiac Steatosis in the Diabetic Heart

Ectopic lipid deposition in the diabetic heart is a well-documented process, and non-invasive studies using 1H-MRS have reported elevated levels of cardiac triglyceride in human diabetes13. However, the link between cardiac steatosis and diabetes, above and beyond that observed in obesity, and its potential role in concentric LV remodelling within diabetes,
has not been explored in humans. This study now demonstrates that diabetes per se is linked to significant cardiac steatosis, and we show a correlation between myocardial triglyceride and the concentric LV remodelling, suggesting a link between the two; however, the causality of this relationship will need to be investigated in future studies.

The importance of cardiac steatosis in the pathophysiology of concentric LV remodelling has been assessed in experimental models. In diabetes, where fatty acid supply exceeds the oxidative capacity of the heart, this leads to diversion of lipids away from oxidative processes and towards non oxidative processes with the production of lipotoxic intermediates such as ceramide and diacyl-glycerol42. These lipotoxic intermediates have been shown to activate signalling pathways affecting ATP production, insulin sensitivity, myo-cellular contractility, and apoptosis42. Recently, it has also been demonstrated that cardiac steatosis potentiates the effects of Angiotensin 2 on the heart43. Given the fact that Angiotensin 2 is a potent hypertrophic stimulus and that both Angiotensin 2 receptor density and mRNA expression are elevated in the diabetic heart44, this is likely to be an important driver for hypertrophy. In addition, animal models of overexpression of fatty acid transporters and increases in triglyceride synthesis both result in severe cardiac steatosis and concentric LV hypertrophy9,36. This provides a mechanistic link between cardiac steatosis, lipotoxicity and concentric LV remodelling in diseases of upregulated fatty acid metabolism such as diabetes. Importantly, successful reduction of myocardial steatosis with glucagon-like peptide-1 receptor (GLP-1) agonists37 and mineralocorticoid receptor blockers38 have both been shown to reverse concentric LV remodelling.

Here, we have demonstrated that myocardial steatosis is a predictor of concentric LV remodelling and subclinical contractile dysfunction in patients with T2DM. This supports the
notion that the development of concentric LV remodelling in T2DM may be mechanistically linked to cardiac steatosis, and that cardiac lipotoxicity represents a component of this process, however an observational study such as ours cannot clearly identify the mechanisms responsible and future studies will need to investigate this. If a causal link is proven, this would suggest that therapies and interventions aimed at reducing myocardial triglyceride may promote beneficial reverse remodelling in humans.

LV Concentric Remodeling and Myocardial Energetics

A healthy heart is able to metabolise a range of substrates, to fulfil the demand for ATP production. Depending on the availability of substrates and the physiological conditions, the heart will switch its metabolic preference amongst substrates. This flexibility is lost in diabetes and myocardial substrate selection is shifted almost exclusively to fatty acid metabolism. This over utilisation of fatty acids results in a reduced ATP yield and a loss of mitochondrial efficiency. The interplay between myocardial energetic status and geometrical changes in diabetes has previously not been explored. Here we report that in the context of well controlled diabetes, myocardial energetics, in the form of PCr/ATP ratios, are impaired, and are linked to concentric remodelling.

Limitations

Of the 46 patients with T2DM, 11 patients (24%) did not consent to have CCTA performed and as such it is possible that occult coronary artery disease could be present in this minority of patients.
Insulin measurements were not taken in the control group. Although diabetes was excluded on fasting glucose measurements, this does preclude the investigation of the role of insulin resistance in the pathogenesis of cardiac steatosis.

Urine albumin levels were recorded only in ~69% (n=32) of the patients with T2DM.

Conclusions

When compared to BMI matched controls, patients with well controlled T2DM exhibit LV concentric remodelling in the absence of arterial hypertension. This concentric remodelling is associated with cardiac steatosis, myocardial energetic impairment and subclinical systolic dysfunction. As myocardial steatosis is independently predictive of concentric remodelling and cardiac systolic strain, it may play an important role in adverse geometric remodelling in T2DM. Importantly, as myocardial TG content is modifiable, strategies aimed at reversing myocardial steatosis may be beneficial in reversing LV remodelling, and potentially improve contractile function and prognosis in patients with diabetes.

Author Contributions

EL: contributed substantially to conception and design of study; acquired and analyzed the data; drafted the manuscript; MM: contributed to data acquisition, critical revision of the manuscript; SKP: contributed substantially to data analyses; RA: contributed to data acquisition, critical revision of the manuscript; JMF: contributed to data acquisition; CTR: contributed to data acquisition and analyses, critical revision of the manuscript; WTC: contributed to data acquisition and analyses; NS: contributed to data acquisition and analyses; JES: contributed to data acquisition and analyses and critical revision of the
manuscript; TDK: participated in study design and have critically revised the manuscript; KC: have critically revised the manuscript; OJR: contributed to statistical analyses and helped to draft the manuscript; SN: conceived the study, participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The study was supported by the Oxford Partnership Comprehensive Biomedical Research Centre with funding from the Department of Health’s National Institute for Health Research Biomedical Research Centers funding plan. O.J.R., S.K.P. and S.N. have received support from the Oxford BHF Centre of Research Excellence. S.N. has received support from the Oxford National Institute for Health Research Biomedical Research Centre. C.T.R. is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 098436/Z/12/Z). J.E.S is a BHF Senior Basic Science Research Fellow. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

We thank Joanna Sellwood for her help with recruitment and for her support with patient care. Eylem Levelt takes full responsibility for the work as a whole, including the study design, access to data, and the decision to submit and publish the manuscript.
References

32. Purvis LAB, Clarke WT, Biasiolli L, Robson MD and Rodgers CT. Linewidth constraints in Matlab AMARES using per-metabolite T2 and per-voxel ΔB0. ISMRM. 2014:2885.
Table 1: Clinical, Biochemical Characteristics and Echocardiographic Features

<table>
<thead>
<tr>
<th>Variable</th>
<th>Controls N=20</th>
<th>Type 2 DM patients N=46</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>54 ± 10</td>
<td>55 ± 9</td>
<td>0.583</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>28.6 ± 2.8</td>
<td>29.6 ± 5.7</td>
<td>0.463</td>
</tr>
<tr>
<td>Male,%</td>
<td>45</td>
<td>50</td>
<td>0.714</td>
</tr>
<tr>
<td>Diabetes duration, y</td>
<td>...</td>
<td>7 [IQR:1-8]</td>
<td></td>
</tr>
<tr>
<td>Heart rate, beats per minute</td>
<td>66 ± 13</td>
<td>68 ± 8</td>
<td>0.377</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>128 ± 12</td>
<td>129 ± 8</td>
<td>0.583</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg</td>
<td>74 ± 8</td>
<td>76 ± 7</td>
<td>0.311</td>
</tr>
<tr>
<td>Plasma fasting glucose, mmol/L</td>
<td>4.9 ± 0.5</td>
<td>8.9 ± 3.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Glycated hemoglobin, %</td>
<td>5.4 ± 0.3</td>
<td>7.5 ± 0.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Glycated haemoglobin, mmol/mol</td>
<td>37 ± 3</td>
<td>57 ± 15</td>
<td><0.001</td>
</tr>
<tr>
<td>Plasma triglycerides, mmol/L</td>
<td>1.59 ± 0.68</td>
<td>1.60 ± 0.78</td>
<td>0.931</td>
</tr>
<tr>
<td>Plasma free fatty acids, mmol/L</td>
<td>0.38 ± 0.23</td>
<td>0.61 ± 0.36</td>
<td>0.017</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
<td>5.6 ± 0.9</td>
<td>3.9 ± 0.9</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL, mmol/L</td>
<td>1.53 ± 0.61</td>
<td>1.18 ± 0.29</td>
<td>0.005</td>
</tr>
<tr>
<td>LDL, mmol/L</td>
<td>3.41 ± 0.53</td>
<td>2.04 ± 0.74</td>
<td><0.001</td>
</tr>
<tr>
<td>Creatinine, mmol/L</td>
<td>72 ± 19</td>
<td>65 ± 17</td>
<td>0.228</td>
</tr>
<tr>
<td>Hematocrit, %</td>
<td>41 ± 4</td>
<td>42 ± 3</td>
<td>0.501</td>
</tr>
<tr>
<td>Urine albumin, mg/L, (N=32)</td>
<td>...</td>
<td>16 ± 30</td>
<td></td>
</tr>
<tr>
<td>Urine albumin: creatinine ratio, mg/mmol, (N=32)</td>
<td>...</td>
<td>1.7 ± 3</td>
<td></td>
</tr>
</tbody>
</table>

Medications, n (%)

Metformin, n (%)	-	41 (89)
Sulphonylurea	-	14 (30)
Aspirin	-	5 (11)
Statin	-	34 (74)
ACE-I	-	12 (26)

Echocardiographic Features

| Mitral in-flow E/A ratio | 1.17 ±0.38 | 0.99 ±0.25 | 0.038 |

Values are mean ± standard deviations or percentages. T2DM indicates type 2 diabetes mellitus; BMI, body mass index; y, years; HDL, high density lipoprotein; LDL, low density lipoprotein; ACE-I angiotensin-converting enzyme inhibitors.
Table 2. LV Geometry and Function

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>Type 2 DM</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=20</td>
<td>N=46</td>
<td></td>
</tr>
<tr>
<td>LV end-diastolic volume, ml</td>
<td>148 ± 34</td>
<td>124 ± 27</td>
<td>0.004</td>
</tr>
<tr>
<td>LV end-systolic volume (ESV), ml</td>
<td>43 ± 16</td>
<td>37 ± 13</td>
<td>0.351</td>
</tr>
<tr>
<td>LV stroke volume (SV), ml</td>
<td>104 ± 21</td>
<td>86 ± 21</td>
<td>0.055</td>
</tr>
<tr>
<td>LV ejection fraction, %</td>
<td>71 ± 5</td>
<td>70 ± 7</td>
<td>0.586</td>
</tr>
<tr>
<td>LV wall thickness, mm</td>
<td>9.6 ± 1.3</td>
<td>10.4 ± 1.8</td>
<td>0.047</td>
</tr>
<tr>
<td>LV mass, g</td>
<td>109 ± 31</td>
<td>120 ± 28</td>
<td>0.183</td>
</tr>
<tr>
<td>LV mass index, g/m²</td>
<td>53.1 ± 15.9</td>
<td>60.2 ± 11.6</td>
<td>0.05</td>
</tr>
<tr>
<td>LV mass to LV end-diastolic volume, g/ml</td>
<td>0.74 ± 0.14</td>
<td>0.97 ± 0.17</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak circumferential diastolic strain rate, s⁻¹</td>
<td>65 ± 13</td>
<td>60 ± 24</td>
<td>0.057</td>
</tr>
<tr>
<td>Native myocardial T1 value, ms</td>
<td>1184 ± 28</td>
<td>1194 ± 32</td>
<td>0.23</td>
</tr>
<tr>
<td>Extra Cellular Volume fraction, %</td>
<td>29 ± 3</td>
<td>29 ± 2</td>
<td>0.773</td>
</tr>
</tbody>
</table>

Values are mean ± standard deviations or percentages. T2DM indicates type 2 diabetes mellitus; CMR, cardiac magnetic resonance; LV, left ventricular.
Figure 1. Differences in cardiac geometry and function between patients with T2DM and controls; (A) LV Mass: LV-EDV ratio (g/ml), (B) Systolic strain %, (C) Myocardial triglyceride content (%) and (D) Myocardial energetics (PCr/ATP ratio).
Figure 2. Representative examples of cardiac 31P-MRS, 1H-MRS and cine imaging in a control and a patient with T2DM. Top panel: normal control 31P-MRS with PCr/ATP=2.16, vs patient
with T2DM PCr/ATP= 1.54; Second panel: normal control 1H-MRS with myocardial lipid to water ratio=0.44%, vs patient with T2DM= 1.74%; Third panel: normal control cine image with LV mass : LV end-diastolic volume ratio=0.55 g/ml, vs patient with T2DM = 1.28g/ml.