Bioengineering the endocrine pancreas: intraomental islet transplantation within a biologic resorbable scaffold

Dora M. Berman,¹,²§, R. Damaris Molano,¹§ Carmen Fotino,¹ Ulisse Ulissi,¹ Jennifer Gimeno,¹ Armando J. Mendez,¹,⁴ Norman M. Kenyon,¹,² Norma S. Kenyon,¹,²,⁵,⁶ David M. Andrews,³ Camillo Ricordi¹,²,⁴-⁶§ and Antonello Pileggi¹,²,⁵,⁶*§

¹Cell Transplant Center, Diabetes Research Institute; ²DeWitt Daughtry Family Department of Surgery; ³Department of Pathology; ⁴Department of Medicine; ⁵Department of Microbiology and Immunology; ⁶Department of Biomedical Engineering; University of Miami.

Running Title: Intraomental biologic scaffold for islet grafts [47 max with spaces]

Abstract: 200
Main document: 4,248
Figures: 8
References: 55

§Equally contributed.
*Please address correspondence to Dr. Dora M. Berman (DBerman2@med.miami.edu) and/or to Dr. Camillo Ricordi (Ricordi@miami.edu) and/or Dr. Antonello Pileggi (antonello.pileggi@nih.gov)

³Current address for Dr. Antonello Pileggi:
Center for Scientific Review (CSR), National Institutes of Health (NIH)
6701 Rockledge Drive, Room 6166
Bethesda, MD 20892-7892
Phone: (301) 402-6297 lFax: (301) 480-2065
email: antonello.pileggi@nih.gov
Abbreviations

AIT: Autologous Islet Transplantation;
ALS: Anti-Lymphocyte Serum;
AUC: Area Under the Curve;
BM: Bone Marrow;
BW: Body Weight;
CTL4Ig: Cytotoxic T-Lymphocyte-Associated protein 4 (CD152)-Immunoglobulin fusion protein
DAPI: 4',6-Diamidino-2-Phenylindole;
DRI: Diabetes Research Institute;
ESRD: End-Stage Renal Disease;
GCG: Glucagon;
GTT: Glucose Tolerance Test;
H&E: Hematoxylin and Eosin;
IACUC: Institutional Animal Care and Use Committee;
IAK: Islet After Kidney;
IBMIR: Instant Blood-Mediated Inflammatory Reaction;
IEQ: Islet Equivalents;
INS: Insulin;
IP: Intraperitoneal;
ITA: Islet Transplantation Alone;
IV: Intravenous;
JVC: Jugular Vein Catheter;
MHC: Major Histocompatibility Complex;
MPA: Mycophenolic Acid;
NHP: Non-Human Primate;
NPO: Nothing Per Oral;
n.s.: Not statistically significant;
OGTT: Oral Glucose Tolerance Test;
PBS: Phosphate Buffered Saline;
rhT: Recombinant Human Thrombin;
SC: Subcutaneous;
SIK: Simultaneous Islet-Kidney;
SMA: Smooth Muscle Actin;
STZ: Streptozotocin;
T1D: Type 1 Diabetes;
UM: University of Miami;
VEGF: Vascular Endothelial Growth Factor.
vWF: von Willebrand factor
Abstract

Transplantation of pancreatic islets is a therapeutic option to preserve or restore β-cell function. Our study was aimed at developing a clinically applicable protocol for extrahepatic transplantation of pancreatic islets. The potency of islets implanted onto the omentum, using an in situ-generated adherent, resorbable plasma-thrombin biologic scaffold, was evaluated in diabetic rat and in a nonhuman primate (NHP) models. Intraomental islet engraftment in the biologic scaffold was confirmed by achievement of improved metabolic function and preservation of islet cytoarchitecture, with reconstitution of rich intra-insular vascular networks in both species. Long-term non-fasting normoglycemia and adequate glucose clearance (tolerance tests) was achieved in both intrahepatic and intraomental sites in rats. Intraomental graft recipients displayed lower levels of serum biomarkers of islet distress (e.g., acute serum insulin) and inflammation (e.g., leptin and α2-macroglobulin). Importantly, low-purity (30% endocrine:70% exocrine) syngeneic rat islet preparations displayed function equivalent to that of pure (>95% endocrine) preparations after intraomental biologic scaffold implantation. Moreover, the biologic scaffold sustained allogeneic islet engraftment in immunosuppressed recipients. Collectively, our feasibility/efficacy data, along with the simplicity of the procedure and the safety of the biologic scaffold components, represented sufficient preclinical testing to proceed to a pilot Phase I/II clinical trial (ClinicalTrials.gov Identifier: NCT02213003).
Introduction

Intrahepatic islet transplantation has been the gold standard for clinical islet transplantation trials aimed at treating patients with Type 1 Diabetes (T1D) and hypoglycemia unawareness, or with surgically-induced diabetes (pancreatectomy)(1). It has resulted in normalization of hemoglobin A1c, improved glycemic control and elimination of severe hypoglycemic events, even in the absence of insulin independence (2). Progressive graft dysfunction has been observed in clinical trials years after intrahepatic islet transplantation, often requiring reintroduction of exogenous insulin. Long-term intrahepatic islet dysfunction has been also observed in pre-clinical models (3). Activation of an immediate blood mediated inflammatory reaction (IBMIR) and hypoxia in the transplant microenvironment following intrahepatic islet embolization contributes to functional impairment and the loss of a significant portion of the transplanted islets (4-7). Furthermore, the hepatic first-pass of orally administered drugs exposes intrahepatic islets to higher concentrations of diabetogenic immunosuppressive agents. Other potential challenging factors in this setting include accumulation of peri-insular fat (microsteatosis) in the liver parenchyma (8-13). Moreover, chronic exposure of intrahepatic islets to endotoxins and other pro-inflammatory agents absorbed through the gastrointestinal tract, in addition to the IBMIR, may trigger adaptive immune responses that are known to be associated with a higher incidence of acute and chronic rejection episodes, as well as possibly facilitate recurrence of autoimmunity in transplanted subjects with T1D (2).

The final objective of developing an extra-hepatic site for islet transplantation is not only the ability to provide physiologic portal drainage of endocrine pancreas secretions, but also the possibility to engineer the transplant microenvironment for the development of successful biological replacement strategies that could avoid the need for chronic recipient immunosuppression (14; 15). Ideal characteristics of such a site include sufficient space to accommodate relatively large tissue volumes (e.g., low purity or encapsulated insulin-producing cell products), allow for minimally-invasive transplant procedures, enable noninvasive longitudinal monitoring, and access for graft biopsy and/or retrieval, as well as physiologic venous drainage through the portal system (14;
15). An additional advantage is the reportedly immunomodulatory effect of antigens delivered through the portal venous system (portal tolerance) that was associated with lower rejection rates in pancreas transplants with portal vs. systemically drained organs (16).

The omentum is easy to mobilize and adequately large to accommodate islet grafts (300-1,500 cm\(^2\) surface area in humans)(17; 18). It is composed of two mesothelial sheets containing rich capillary networks draining into the portal venous system (19-21). Furthermore, intraomental islet implantation was shown to improve metabolic control in diabetic animal models (22; 23).

We engineered a biologic scaffold by using plasma and recombinant human thrombin (rhT), a serine protease (factor IIa in the coagulation cascade) that catalyzes the conversion of plasma fibrinogen into fibrin that polymerizes forming a clot. The intraomental site was tested by implanting islets, embedded \textit{in situ} into the resorbable biologic scaffold, on the omentum of streptozotocin-induced diabetic rat and nonhuman primate (NHP) models. Our data support the feasibility of the approach that is currently in Phase I/II clinical trials.

Materials and Methods

Animals

Studies involving animal subjects were performed under protocols approved and monitored by the University of Miami (UM) IACUC. Animals were housed at the Division of Veterinary Resources. Lewis (major histocompatibility, MHC, rat haplotype: RT1\(^{l}\)) and Wistar Furth (WF; RT1\(^{u}\)) rats (Harlan.com) were used as islet donors (>250-grams males), and Lewis rats as recipients (170-200-grams females). For selected experiments, rats with an indwelling jugular vein catheter (JVC) were purchased. Rodents were housed in micro-isolated cages with free access to autoclaved water and food. Both donor and recipient cynomolgus monkeys (7.92 and 3.58 years old, respectively) were obtained from the Mannheimer Foundation (Homestead, FL), and were specific pathogen free. Pair-housed monkeys were supplied with water \textit{ad libitum} and fed twice daily (24).
Diabetes induction and metabolic monitoring

Diabetes was induced by administration of streptozotocin at 60 mg/kg in rats (SigmaAldrich.com; two intraperitoneal injections 2-3 days apart)(25), and 100 mg/kg IV in NHP (Teva.com)(7; 22).

Rodents with non-fasting glycemic values ≥300 mg/dl on whole blood samples obtained from tail pricking (OneTouchUltra glucometers, Lifescan.com) were used as recipients. Graft function was defined as nonfasting glycemia <200 mg/dl. At selected time points after transplantation, a glucose tolerance test (GTT) was performed in rodents to evaluate graft potency (25). After overnight fasting, an oral (OGTT; 2.5 g/kg) or intravenous (IVGTT; 0.5 g/kg) glucose bolus was administered and glycemic values monitored with portable glucometers. The area under the curve (AUC) of glucose was calculated, as described (26). In the case of allogeneic islet transplants, return to nonfasting hyperglycemic state was considered sign of graft rejection.

In _NHP_, diabetes was defined as fasting C-peptide levels <0.2 ng/mL, and a negative response (stimulated C-peptide <0.3ng/mL) to a glucagon challenge performed 4-weeks after streptozotocin treatment (7; 22). Heel-stick glycemic values were monitored 2–3 times daily (OneTouchUltra). Subcutaneous insulin (Humulin®R, Lilly.com; or Humulin®R-plus Lantus®, Sanofi.us) was administered based on an individualized sliding scale as needed, aiming for fasting and post-prandial plasma glucose levels (FBG and PBG, respectively) of 150–250 mg/dL post-streptozotocin and prior to transplantation. Plasma C-peptide levels were assessed by electrochemiluminescence immunoassay using a Cobas® analyzer (USDiagnostics.Roche.com).

Plasma collection

Blood obtained from venipuncture was collected into microcentrifuge tubes containing 3.2% sodium citrate. Plasma was obtained following centrifugation at 1,455g for 10 minutes at room temperature, and aliquots were stored at -80°C and thawed before use.

Islet isolation and graft preparation

Islets were obtained by enzymatic digestion, followed by purification on density gradients using protocols standardized at the _Diabetes Research Institute_ (DRI) for rats
To evaluate the effect of the degree of islet preparation purity on intraomental engraftment and function, Lewis rat islets were isolated and purified using standard technique (27), yielding >95% purity (pure fraction) as assessed by dithizone staining (SigmaAldrich.com)(1; 2). The pancreatic slurry containing exocrine tissue clusters (lowest purity fraction) after islet purification was maintained in culture and counted using the algorithm used to determine Islet Equivalents (IEQ)(2). Before transplantation, an aliquot of the final pure islet product was mixed with the exocrine pancreatic tissue to obtain a 30% pure islet cell product (3:7 vol:vol, islet vs. exocrine tissue).

Islet transplantation

Under general anesthesia, a substernal midline mini-laparotomy allowed exteriorizing the omentum that was spread flat over a sterile field (Figure 1). We previously reported a similar intraomental flap transplant procedure in NHP (22).

The rhT (Recothrom®, National Drug Code No. 28400; ZymoGenetics.com) was reconstituted with the 0.9% NaCl included in the kit for rodents or with Dulbecco Phosphate Buffered Saline with Ca\(^{2+}\)/Mg\(^{2+}\) (GIBCO®, thermofisher.com) in the NHP experiment. Final aliquots of rhT (1,000 IU/ml) were stored at -20°C.

The transplantation procedure with the in situ generation of the islet-containing biologic scaffold is summarized in Figure 1. For rodent experiments, islet aliquots were centrifuged (1-min, 200g), supernatant discarded and islets resuspended in syngeneic (autologous) plasma. After another centrifugation, most of the excess plasma was removed and the slurry of islets/plasma collected with a precision syringe (HamiltonCompany.com). Similarly, in the case of the NHP, islets were collected into a microcentrifuge tube, quick spun and washed twice in donor plasma (obtained on day -1, stored at 4°C) and transported to the operating room. Plasma excess was removed before collecting islets/plasma using a micropipette (P1000). In both species, the islets/plasma slurry was gently distributed onto the surface of the omentum (Figure 1A, b2, c3) and then rhT gently dripped onto the graft (Figure 1A, c4), resulting in immediate gelling and adherence of the islets to the omental surface. The omentum was gently folded on itself to
increase contact with and containment of the graft (Figure 1A, b3-4, c5). In the NHP, nonresorbable sutures were placed on the omentum outside the graft area as reference for the time of retrieval (Figure 1c5). In rodent experiments, nothing, sutures, or a plasma:rhT mix (10:1 vol:vol) was used on the folded omentum. After repositioning the omentum into the peritoneal cavity, abdominal wall muscle and skin were sutured.

To avoid the potential confounding effect of variability in islet preparations (31), for rat experiments aimed at comparison of transplant sites or purity, equal numbers of syngeneic islets, from large batch isolations, were implanted in parallel into diabetic recipients in a biologic scaffold or into the liver (25). In selected rats, survival surgery to remove graft-bearing omentum after long-term follow-up was performed to confirm prompt return to hyperglycemia, thereby ruling out residual function of native endocrine pancreas.

Immunosuppression

Clinically-relevant immunosuppressive agents were used in both rat and NHP allogeneic transplant models (32-35). Rats received induction treatment with anti-lymphocyte serum (ALS, Accurate.com; 0.5 ml i.p. on day -3) and mycophenolic acid (MPA; Myfortic®, Novartis.com; 20 mg/kg/day starting on the day of transplant for 2-wks then tapered ¼ of the dose every two days until day 20)(36) combined with Cytotoxic T-Lymphocyte-Associated protein-4 (CD152)-Immunogobulin fusion protein (CTLA4Ig; Abatacept, Orencia®, BMS.com; 10 mg/kg i.p. on days 0, 2, 4, 6, 8, 10 and weakly thereafter), adapted from Safley et al. (35). The NHP received anti-thymocyte (rabbit) globulin (Thymoglobulin®, Sanofi.us; 10 mg/kg IV on days -1, 0, 2, 4, 6, 8, 10 and monthly thereafter), adapted from Safley et al. (35). The NHP received anti-thymocyte (rabbit) globulin (Thymoglobulin®, Sanofi.us; 10 mg/kg IV on days -1, 0, 2, 4 from transplant); CTLA4Ig (Belatacept, Nulojix®, BMS.com; 20 mg/kg IV on days 0, 4, 14, 28, 56, 75 and monthly thereafter at 10 mg/kg) and sirolimus (Rapamycin®, LCLabs.com; daily from day 2, aiming at trough levels of 8-12 ng/ml).

Biomarkers

Blood samples were collected from indwelling JVC at baseline and after selected time points post-transplant. Insulin, C-peptide, leptin, interleukin (IL)-6 and chemokine (C-C motif) ligand-2 [CCL2; formerly monocyte chemotactic protein (MCP)–1], were measured using commercial multiplex kits (EDMMillipore.com) and analyzed on a
Luminex system. Levels of the rat acute phase proteins α2-macroglobulin and haptoglobin were measured using specific ELISA kits (LifeDiagnostics.com) on a kinetic microplate reader (SoftMaxPro v.5; MolecularDevices.com).

Histopathology

Tissue sections (4-µm thick) were stained with hematoxylin and eosin (H&E) for morphological assessment of the grafts. Masson trichrome staining (Chromaview; Richard-Allan Scientific™, from VWR.com) was performed on selected grafts to reveal collagen (blue stain), or muscle fibers and cytoplasm (red stain)(25). Immunofluorescence was performed using specific antibodies to detect insulin (guinea pig anti-insulin; 1:100; Dako.com), glucagon (GCG; rabbit anti-glucagon; 1:100; BioGenex.com), endothelium (rabbit anti-CD31; 1:20; Abcam.com, or von Willebrand factor, rabbit anti-vWf; 1:50; EDMMillipore.com), smooth muscle actin (SMA; rabbit anti-SMA; 1:50 Abcam.com) and T cells (CD3; rabbit polyclonal anti-human; 1:100 CellMarque.com). Secondary antibodies used were goat anti-guinea pig AlexaFluor-568 (1:200) and goat anti-rabbit AlexaFluor-488 (1:200; Invitrogen; thermofisher.com). Digital images were acquired using a SP5 inverted confocal microscope (Leica.com) at the DRI Imaging Core Facility.

Scanning Electron Microscopy

Human plasma was obtained from consented volunteers [IRB20091138]. Human islets, and plasma/thrombin clots with or without human islets were fixed in 2% glutaraldehyde in phosphate buffered solution (PBS; 0.137M NaCl, 0.01M Na₂HPO₄, 0.0027M KCl, and pH 7.4) for ≥3-hours and stored in fixative at 4°C. After 3 washes, samples were post-fixed with 1% osmium tetroxide in PBS, dehydrated in ethanol, dried with hexamethyldisilazane, dispersed in plastic weigh boats and outgassed overnight. Preparations were adhered by gentle tapping with an aluminum stub, covered with a carbon adhesive tab, then coated with a 20nm- thick layer of Pd in a plasma sputter coater and imaged at the UM Center for Advanced Microscopy using a field emission scanning electron microscope (FEI, XL-30).
Statistical analysis

Data were analyzed using Excel® (Microsoft.com), SigmaPlot (Sigmplot.com) and Prism® (GraphPad.com). Shapiro-Wilk test was used to assess parametric data distribution. Unpaired t-test was performed to compare experimental groups. \(P \)-values <0.05 were considered to be statistically significant.

Results

Ultramicroscopic structure of the biologic scaffold

Scanning electron microscopy revealed the intricate net of fibrin fibers obtained through the reaction triggered by rhT in human plasma (Figure 2A). Human islet cell surface appeared smooth by ultramicroscopy (Figure 2B). The clot induced by combining human plasma with rhT and human islets in vitro resulted in the development of an orthomorphic three-dimensional (3D) fibrin matrix trapping islet structures within the newly formed biologic scaffold (Figure 2C). We reasoned that the induction of the plasma/thrombin reaction to create a microscopic, adherent fibrin scaffold around the implanted islets would be useful to promote islet graft adhesion on the surface of the omentum, preventing islet pelleting, and therefore aiding engraftment, neo-vascularization and islet survival.

Intraomental islets transplanted into biologic scaffolds restore normoglycemia in diabetic rats.

We utilized a syngeneic rat islet transplant model. We have previously demonstrated that streptozotocin-induced diabetic recipients of 3,000 IEQ experienced reversal of diabetes after either intra- or extra-hepatic transplantation (25). After intraomental transplantation of 17,338±881 IEQ/kg, all animals (n=7; 173.4±91 grams body weight, BW) achieved normoglycemia within two days and maintained euglycemia during the follow-up period (Figure 3A), even >200 days. Two animals underwent removal of the graft-bearing omentum on day 76 post-transplantation: one died after surgery and the other promptly become hyperglycemic (Figure 3A). The rest of the recipients was followed for >200 days post-transplantation. IVGTT performed in selected animals two
months after islet transplantation showed that transplanted islets cleared glucose within 75-minutes after receiving a glucose bolus in a fashion comparable to that of naïve animals (n=3/group; AUC: 17,851±810 in naïve rats vs. 16,276±857 mg×min×dL\(^{-1}\) of intraomental islet biologic scaffold recipients; Figure 3B). Furthermore, OGTT performed on transplanted animals at 11 and 26 weeks post-implantation, confirmed comparable glucose clearance at both time points (n=5; AUC: 19,542±1,735 at 11-wks and 20,735±785 mg×min×dL\(^{-1}\) at 26-wks; Figure 3C). Histopathology of explanted grafts showed well-preserved islet cytoarchitecture (Figure 3D-G), strong insulin immunostaining, and abundant intragraft vascularization (e.g., SMA); all features were compatible with adequate engraftment, and corroborated the \textit{in vivo} functional data.

Comparable function of intrahepatic and intraomental islets transplanted into biologic scaffolds.

We compared the performance of syngeneic islets implanted within the intraomental biologic scaffold to that of intrahepatic grafts. Aliquots of 1,300 IEQ (~8,200 IEQ/kg BW, a ‘clinically-relevant’ mass) from the same batch of islets were transplanted in parallel either within an intraomental biologic scaffold (n=7; 160.3±6.4 grams BW; 8,122±334 IEQ/kg; Figure 4A) or an intrahepatic site (n=5; 155.4±7.3 grams BW; 8,380±396 IEQ/kg; Figure 4B). All recipients in both groups achieved euglycemia within one week and maintained good metabolic control during the 82 days (~12-wks) follow-up period. Omental graft removal resulted in prompt return to hyperglycemia (n=4; Figure 4A). At 5 (Figure 4C) and 11 weeks post-transplant (Figure 4D), OGTT showed comparable metabolic function in both transplant sites (5-wks AUC: 18,393±571 and 18,036±598.5; 11-wks AUC: 21,987±2,580 and 21,149±1,456 mg×min×dL\(^{-1}\) for intraomental biologic scaffold recipients or intrahepatic islet recipients, respectively; Figure 4C-D).

Lower stress-related biomarkers are detected in the serum of recipients of intraomental islets within a biologic scaffold

Selected biomarkers associated with islet distress and inflammation elicited by the transplantation procedure were evaluated. Blood samples were collected from JVC at
different time points after transplantation. A spike in insulin and C-peptide levels, likely a result of insulin dumping from distressed islet cells (5; 37; 38), was observed 1-hr post-transplant in both experimental groups. The insulin peak was significantly higher in the intrahepatic as compared to the intraomental group (2.841±0.338 \text{ vs. } 1.405±0.352 \mu\text{g/ml}, respectively; \(p=0.018; \text{Figure 5A} \)), with comparable levels in both groups at subsequent time points (data not shown). No statistically significant differences were observed in C-peptide levels (2.565±0.25 \text{ vs. } 2.941±0.303 \mu\text{g/ml}, respectively; \text{Figure 5B} \)).

Inflammatory biomarkers MCP-1/CCL2 (\text{Figure 5C}) and IL-6 (\text{Figure 5D}) showed comparable increases between experimental groups at 24-hrs (\(p=\text{n.s.} \)), with undetectable values by 72-hrs post-transplant in both groups (not shown). Leptin levels were significantly higher at 24-hrs in the recipients of intrahepatic as compared to intraomental group (633±31 vs. 483±35 pg/ml, respectively; \(p=0.013; \text{Figure 5E} \)). Acute phase protein haptoglobin levels were comparable in both groups (\text{Figure 5F}), while \(\alpha \)2-macroglobulin levels were significantly higher in intrahepatic islet recipients \text{vs.} the intraomental group at 24-hrs (280±58 \text{ vs. } 155±26 pg/ml; one-tail t-test: \(p<0.03; \text{Figure 5G} \)).

The intraomental biologic scaffold provides adequate engraftment of low purity islet preparations

Clinical human islet preparations usually contain different degrees of impurities (e.g., exocrine tissue) that increase the final volume of transplanted tissue. We evaluated whether our intraomental biologic scaffold would be adequate for the implantation of clinically relevant, low-purity islet preparations. Implantation of 2,000 IEQ from either >95%-pure (\(n=3; 167.3±1.5 \) grams BW; 11,853±109 IEQ/kg) or 30%-pure (\(n=3; 170.3±10.5 \) grams BW; 11,771±725 IEQ/kg) syngeneic islet preparations led to rapid diabetes reversal (within 5 days) in all recipient rats (\text{Figure 6A}). All animals maintained stable normoglycemia throughout the follow-up period, and displayed comparable glucose clearance during OGTT (AUC: 17,776±1,687 for recipients of 90%-pure preparations and 19,734±1,997 mg×min×dL\(^{-1} \) for recipients of 30%-pure preparations \text{Figure 6B}). Surgical removal of the graft-bearing omentum was performed >100 days after transplantation. One of the recipients of 30%-pure islets died after surgery, while all
other animals in both groups showed prompt return to hyperglycemia, confirming the graft-dependent normoglycemia.

The intraomental biologic scaffold provides adequate engraftment of allogeneic islets in immunosuppressed recipients

Suitability of the intraomental biologic scaffold to support islet engraftment under clinically-relevant systemic immunosuppressive treatment (32-35) was evaluated in a fully MHC-mismatched allogeneic rat transplant combination. All four diabetic Lewis rat (TR1\(^1\)) recipients of 3,000 IEQ WF islets (RT1\(^u\)) achieved normoglycemia within 5 days and sustained graft function for up to 5-wks post-transplantation under the transient systemic immunosuppression protocol utilized, when graft rejection coincided with return to an hyperglycemic state (Figure 7).

Intraomental islet transplant in a biologic scaffold engrafts in a preclinical model.

We also tested the effect of the biologic scaffold in a clinically relevant preclinical model of allogeneic islet transplantation in a diabetic cynomolgus monkey. Before transplantation, the animal required ~4-5 IU/Kg/day exogenous insulin with plasma C-peptide <0.05 ng/ml (Figure 8). An islet mass of ~48,700 IEQ (~150\(\mu\)l of total islet graft volume) equivalent to 9,347 IEQ/kg was implanted. The transplant procedure and post-operative clinical outcome were uneventful with standard recovery from surgery. After the first few weeks post-transplant, improvement of FBG and PBG was observed, requiring progressive reduction of exogenous insulin (Figure 8A). Positive fasting C-peptide levels (Figure 8B) were observed immediately post-transplant and throughout follow-up. The animal subsequently expired on POD 49 due to technical complications unrelated to the engraftment site. Histopathological assessment of the explanted graft demonstrated well-preserved islet morphology (Figure 8C) with immunoreactivity for the endocrine markers insulin and glucagon (Figure 8D), some degree of peri-insular lymphocyte infiltrate (CD3; Figure 8E), and abundant intra- and extra-insular vascular structures (SMA; Figure 8F; vWF; Figure 8G).
Discussion

Our study was aimed at developing a clinically applicable protocol for extra-hepatic transplantation of pancreatic islets. Over the past 20 years, the omentum has been studied as a possible islet implantation site in different animal models, following the initial description by Yasunami et al. using rat isografts (39) and later reports in large animals (40-42). Due to portal venous drainage, the omentum may attain more physiological metabolic responses as compared to intrahepatic and other islet transplantation sites that were associated with hyperinsulinemia, insulin resistance and impairment of insulin action in animal models (20; 21; 23). Human islet cell implants survived better in the omentum than intrahepatically in immunodeficient rats, and their engraftment correlated positively with number and purity of implanted cells (43). Perinatal porcine islet cells displayed comparable growth of the β-cell volume over time in the omentum and kidney subcapsular space, the former leading to higher insulin reserves and an increased pool of proliferating cells (44). These data reinforce the feasibility of the omentum as a potentially favorable site for the implantation of insulin producing cell products in clinical protocols.

From the clinical translational perspective, the omentum can be accessed using minimally invasive surgical techniques (e.g., mini-laparotomy or laparoscopy), and it may allow implementation of bioengineering approaches to enhance islet engraftment, survival and development of strategies for the reduction and eventual elimination of chronic systemic immunosuppression of the recipients (14; 22; 45). We evaluated the potency of islets implanted onto the omentum using an autologous resorbable biologic scaffold to promote islet adherence onto its surface using only clinical grade reagents (e.g., rhT). The clinical safety profile of rhT has been established to promote hemostasis during surgical procedures (46). We reasoned that applying islets suspended in autologous plasma on the surface of the omentum would accommodate relatively large islet volumes, while minimizing pelleting. A similar approach based on 3D islet-plasma constructs prepared ex vivo and then rolled-up within the greater omentum was described in pancreatectomized dogs (47).

Our in vitro results showed that addition of rhT to human islets resuspended in human plasma generates a complex, orthomorphic fibrin matrix embedding the islets. Our in vivo
studies demonstrate that islets transplanted in the *in situ*-generated biologic scaffold onto the omentum of diabetic animals engraft and function long-term. Normalization of nonfasting glycemic values and responses during metabolic challenges were reproducibly achieved in recipients of syngeneic islets in an intraomental biologic scaffold. Histopathology showed preserved islet cytoarchitecture in the presence of rich intra-insular vascular structures and lack of fibrosis both in both rodent and NHP models. Moreover, when adequate islet numbers were implanted in the rat model (i.e., >1,300 IEQ; ~8,200/kg BW), there was comparable potency between intraomental and intrahepatic transplants. However, a higher proportion of intrahepatic islet recipients achieved metabolic control when a marginal (though not clinically-relevant) syngeneic rat islet mass of 450 IEQ, representing approximately 2,700/kg BW, was implanted (data not shown). It is noteworthy that 5,000 IEQ/kg BW is currently the minimum requirement for clinical intrahepatic islet transplantation, and insulin independence is generally attained when >12,000 IEQ/kg are implanted (1).

Serum levels of insulin and C-peptide, surrogate biomarkers of acute β-cell distress and death associated with the implantation procedure (5; 37; 38), were increased 1-hr post-implant, with higher levels in recipients of intrahepatic vs. intraomental islets. Perhaps the lower intraomental levels are due, at least in part, to the lack of shear forces and IBMIR in this site (4; 6). While the kinetics for appearance of the inflammatory markers IL-6, MCP-1/CCL2 and haptoglobin were comparable, α2-macroglobulin levels were higher 24-hrs after intrahepatic vs. intraomental transplantation. Notably, the pleomorphic plasma protein α2-macroglobulin interfaces with the coagulation system and is an acute phase protein (48). This result may be due to hepatic tissue responses following islet embolization in the portal system (i.e., Kupffer cell activation and in the context of thrombi). Levels of leptin, a mediator of innate immunity through multiple proinflammatory effects (49), increased in both groups, but were higher in the intrahepatic compared to the intraomental islet recipients, reaching statistical significance at the 24-hrs time point. Collectively, these data suggest a lower degree of inflammation generated after intraomental islet implantation in the biologic scaffold as compared to the liver.
Anti-thrombin agents have been proposed to reduce IBMIR and promote intrahepatic islet engraftment (50). Our data indicate that thrombin per se is not detrimental to islet engraftment when used in an extravascular (extrahepatic) site to induce a resorbable matrix in vivo. This is likely due to the absence of the plethora of proinflammatory events associated with intravascular thrombosis in the hepatic sinusoids, including transplant microenvironment activation (platelets, leukocytes and endothelial cells), that lead to islet hypoxia and loss of functional islet mass.

Human islet preparations generally include low-purity fractions of the final cellular product to achieve adequate endocrine cell mass for transplantation. However, the final volume of clinical human islet preparations implanted is generally kept <10ml to reduce the risk of portal vein hypertension following embolization in the liver sinusoids. The net effect of the inclusion of exocrine fractions in the islet transplant preparation remains to be determined (51). Exocrine tissue may be detrimental to islet graft outcome because of competition for nutrients and oxygen in the transplant site, contribution to microenvironment activation, and increased antigenic mass transplanted. Conversely, exocrine tissue may comprise critical cellular precursors that promote engraftment, tissue remodeling and endocrine cell plasticity leading to long-term function after transplantation (52; 53). In light of the promising long-term results of autologous intrahepatic human islet grafts (not or minimally purified)(54), development of extrahepatic implantation sites that accommodate impure islet preparations represents a desirable goal for clinical islet transplantation (14; 15; 55). In this study, transplantation of islet preparations with low purity (30% endocrine) resulted in stable metabolic control that was comparable to that of pure preparations (>95% endocrine) transplanted into the biologic intraomental scaffold.

Our preclinical studies of islet transplantation support the feasibility of intraomental transplantation of islets using the described in situ-generated biologic scaffold. Using both rat and NHP models, we demonstrated that allogeneic islets implanted in the intraomental biologic scaffold under clinically-relevant immunosuppression (32) can engraft and improve glucose control, and that this procedure may be feasible and effective in human subjects. The implantation procedure that we have optimized allows for distribution of the grafted tissue on the large omental surface and the creation of a thin
adherent biologic scaffold in situ with minimal manipulation, avoiding islet pelleting (even in the case of low purity cell products). Folding of an omental flap on the scaffold creates a double outer omental layer containing the graft, increasing surface contact (for nutrient diffusion and subsequent neovascularization), and protecting the islets from shear forces (peristalsis and diaphragm excursions) in the peritoneal cavity. The use of only two components (namely, the patient’s own plasma and rhT) to generate a resorbable biologic scaffold, and the simplicity of the implantation technique, make our approach easy to implement and clinically translatable. Furthermore, it may represent an initial step towards engineering the transplant site to enhance β-cell replacement therapies for insulin requiring diabetes (14; 22; 45). A phase I/II pilot clinical trial is currently ongoing at our Center to evaluate the safety and efficacy of transplanting single-donor allogeneic islets in biologic intraomental scaffolds under conventional immunosuppression in people with brittle T1D (ClinicalTrials.gov Identifier: NCT02213003).

Acknowledgments
The University of Miami holds an Animal Welfare Assurance A-3224-01, effective 12/4/02 with the Office of Laboratory Animal Welfare, National Institutes of Health and is accreditation by the Association for Assessment and Accreditation of Laboratory Animal Care.

This study was partially supported by the Diabetes Research Institute Foundation (www.diabetesresearch.org), by the Leona M. and Harry B. Helmsley Charitable Trust and by the Juvenile Diabetes Research Foundation International (17-2012-361).

The project was part of Dr. Pileggi’s Master’s of Science in Clinical and Translational Investigation training, a Program supported by the Miami Clinical and Translational Science Institute, from the National Center for Advancing Translational Sciences and the National Institute on Minority Health and Health Disparities (1UL1TR000460). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies. This article was prepared while Dr. Pileggi was employed at the University of Miami. He is currently employed at NIH/Center for Scientific Review. The opinions expressed in this article are the author's own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.

The Authors are grateful to Paul Latta (Converge Biotech Inc.); to the faculty and staff of the DRI’s Cell Transplant Center, particularly to Dr. Rodolfo Alejandro and Dr. Luca Inverardi; to Christian La Sala (DRI Preclinical Cell Processing and Translational Models Program); Dr. Joel Szust, Alejandro Tamayo-Garcia, Yelena Gadea and Elsie Zahr-Akrawi (DRI Translational Core); Kevin Johnson (DRI Histology Lab); Dr. Patricia L. Blackwelder (UM Center for Advanced Microscopy); Dr. Marcia Boulina (DRI
Imaging Core); Dr. Elina Linetsky (DRI cGMP Human Cell Processing Core); to Waldo Diaz, James Geary and Reiner Rodriguez-Lopez for their excellent NHP care, and to Alexander Rabassa, Ena Poumian-Ruiz and Melissa Willman for assistance with NHP islet isolation and preliminary in vitro testing. Special thanks to the UM IACUC, EHS and Division of Veterinary Resources for valuable support provided.

Contribution statement. DMB, CR and AP developed the concept. DMB, RDM, AP and CR conceived and designed the studies, performed experiments, optimized protocols, analyzed data and wrote paper. UU and JG performed experiments, analyzed data and reviewed manuscript. CF, NMK and NSK performed experiments, analyzed data, provided intellectual input, and reviewed manuscript. AJM and DMA provided intellectual feedback and reviewed manuscript. Antonello Pileggi and Camillo Ricordi are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Duality of interest. No duality of interest needs to be disclosed. The University of Miami and members of the research team (RDM, NSK, CR, AP) hold, but do not receive royalties for intellectual property used in this study. They are also equity owners in Converge Biotech.

Prior Presentation. Parts of this study were presented at the 12th Congress of the Cell Transplant Society, Milan, Italy, 7-11 July, 2013 and at the 75th Scientific Sessions of the American Diabetes Association, Boston, MA, 5-9 June, 2015.
References

Figure Legends

Figure 1. Intraomental islet implantation within a biologic scaffold.

A. Schematic diagram of the transplant procedure.
B. Procedure in rat.
C. Procedure in NHP.

After midline laparotomy (b1), the omentum is gently exteriorized and opened (b2, c1). The islet graft, resuspended in autologous plasma (c2), is gently distributed onto the omentum (b3, c3). Recombinant human thrombin is added onto the islets on the omental surface to induce gel formation (c4) and then the omentum is folded to increase the contact of the graft to the vascularized omentum (b4, c5). Non-resorbable stitches were placed on the far outer margins of the graft in the NHP (c5) for easier identification of the graft area at the time of graft removal.

Figure 2. Scanning electronic micrograph of the biologic scaffold in vitro.

A. Plasma/thrombin mix. Fibrin polymerizes forming an intricate 3D network (bar = 5 µm).
B. Untreated human islet cell surface in culture medium (bar = 50 µm).
C. Human islets embedded within the biologic scaffold. The polymerized fibrin forms an orthomorphic matrix around the islet surface (bar = 50 µm).

Figure 3. Intraomental islets transplanted into biologic scaffolds restore normoglycemia in diabetic rats.

A. Non-fasting blood glucose levels in diabetic rats (n=7; 173.4±91 grams BW) transplanted with 3,000 IEQ (17,338±881 IEQ/kg) onto the omentum showing prompt reversal of diabetes, and hyperglycemia following removal of the omental graft (arrowhead) on POD 74 (n=1) or 240 (n=4).
B. Glycemic profile during IVGTT performed in selected animals (n=3) 2-months after transplant as compared to that of naïve animals (n=3). Inset shows area under the curve (AUC, mg×min×dL\(^{-1}\)) for each group.
C. Glycemic profile during oral glucose tolerance test performed in transplanted animals at (n =5) 11 (●) and 26 weeks (○) after transplantation. Inset shows area under the curve (AUC, mg×min×dL\(^{-1}\)) during the glucose challenge.
D – G. Representative histopathological pattern of intraomental islet grafts. Sections were obtained from an intraomental islet graft explanted on POD 76.
D. Hematoxylin and Eosin staining.
E. Masson Trichrome staining.
F. and G. Immunofluorescence
microscopy of a section stained with anti-insulin (INS; red fluorescence), anti-glucagon antibody (GCG; green fluorescence; F), anti-smooth muscle actin (SMA, green fluorescence; G), and with nuclear dye 4',6-diamidino-2-phenylindole (DAPI; blue fluorescence). The box indicates the area of the graft shown at higher magnification on the left panel.

Figure 4. Comparable function of intrahepatic and intraomental islets transplanted into biologic scaffolds. Non-fasting blood glucose levels in diabetic rats receiving a clinically relevant syngeneic islet mass of 1,300 IEQ (~8,200 IEQ/kg BW) within an intraomental biologic scaffold, A (●, n=7) or into the liver (via the portal vein), B (○; n=5) with islets from the same batch isolation. Both groups had identical time course for reversal of diabetes, and removal of the intraomental biologic scaffold on day 80 post-transplant resulted in return to hyperglycemia (arrowhead in panel A). C. Glycemic profile during OGTT performed in all transplanted animals 5- or 11-weeks (D) after transplantation. Inset shows area under the curve (AUC, mg×min×dL⁻¹) during the glucose challenge for each group.

Figure 5. Biomarkers detected in the serum of rat recipients of intraomental biologic scaffold and intrahepatic syngeneic islets. Aliquots of 1,300 IEQ from the same syngeneic donor rat islet batch were transplanted in parallel either within the intraomental biologic scaffold (Omentum, ○) or the intrahepatic site (Liver, ●). Blood samples were collected from indwell JVC for detection of biomarker levels in circulation. Data presented are means ± SEM (n=4-7 per time point). A-B. Metabolic markers assessed at 1-hr post-transplant: A. Insulin in µg/ml (*p=0.018). B. C-peptide in µg/ml. C-G. Inflammation markers assessed 24 hours post-transplant: C. MCP-1/CCL2 in pg/ml. D. IL-6 in pg/ml. E. Leptin in pg/ml (*p=0.013). F. Haptoglobin in µg/ml. G. Alpha-2-macroglobulin in µg/ml (*p<0.03).

Figure 6. Intraomental transplantation of islets with high and low purity into diabetic rats. A. Non-fasting blood glucose levels in diabetic rats transplanted with clinically-relevant mass of 2,000 IEQ syngeneic islets with >95%-purity (●, n=3;
167.3±1.5 grams BW; 11,853±109 IEQ/kg) or with 30%-purity (○, n=3; 170.3±10.5 grams BW; 11,771±725 IEQ/kg) onto the omentum. Removal of the omental graft >100 days after transplantation (arrowhead) resulted in return to hyperglycemia. B. Glycemic profile during oral glucose tolerance test performed in animals transplanted with high (●) and low (○) purity islets preparations 70 days after transplantation.

Figure 7. The intraomental biologic scaffold supports the engraftment of allogeneic islets under systemic immunosuppression in diabetic rats. A fully MHC-mismatched allogeneic rat transplant combination in which diabetic female Lewis rat (TR1⁺; n=4) received 3,000 IEQ WF rat islets (RT1⁻) in the intraomental biologic scaffold under a protocol of clinically-relevant immunosuppressive agents consisting of lymphodepletion induction with anti-lymphocyte serum (0.5 ml i.p. on day -3), and maintenance with mycophenolic acid (MPA; 20 mg/kg/day days 0-14, then tapered ¼ of the dose every two days until day 20), and CTLA4Ig (Abatacept; 10 mg/kg i.p. on days 0, 2, 4, 6, 8, 10 and weakly thereafter; arrows). Nonfasting glycemic values for each animal during the follow-up are presented. Graft rejection was defined as return to hyperglycemic state.

Figure 8. Intraomental allogeneic islet transplantation in a diabetic nonhuman primate. A diabetic cynomolgus monkey received 9,347 IEQ/kg allogeneic islets in the omentum under the cover of clinically-relevant immunosuppression therapy. A. Exogenous Insulin Requirement (EIR, IU/Kg/day; gray bars), fasting blood glucose levels (FBG, mg/dL; ○) and post-prandial blood glucose levels (PBG; ●). B. Fasting C-peptide (c-pep, ng/ml) levels measured in the animal over the follow-up period. C – G. Histopathological pattern of intraomental islet graft on day 49 post-transplant. C. Hematoxylin and Eosin staining. D. Immunofluorescence microscopy for the evaluation of immunoreactivity for insulin (INS, red), glucagon (GCG, green) and nuclear dye (DAPI, blue). E. Immunofluorescence for insulin (INS, red) and CD3+ T cells (CD3, cyan). F – G. Intrainsular neovasculogenesis. F. Immunofluorescence for insulin (INS, red) and vascular structure (Smooth Muscle Actin; SMA, green) and DAPI (blue). G. Immunofluorescence microscopy for insulin (INS, red), endothelial cells (von Willebrand factor, vWF, green), and DAPI (blue).
A

Islet/plasma slurry

Islet/plasma slurry applied onto exposed omentum

rhT drops applied on islet/plasma on omentum

Omentum is folded on itself

Biologic scaffold containing islets between omental layers

B

b1

b2

b3

b4

C

c1

c2

c3

c4

c5
A

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figureA}
\caption{Diabetes}
\end{figure}

B

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figureB}
\caption{Fasting C-peptide (ng/ml)}
\end{figure}

C

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figureC}
\caption{INS GCG DAPI}
\end{figure}

D

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figureD}
\caption{INS CD3}
\end{figure}

E

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figureE}
\caption{INS SMA DAPI}
\end{figure}

F

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figureF}
\caption{INS vWF DAPI}
\end{figure}

G