Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks

  1. Laurie J. Goodyear1
  1. 1Joslin Diabetes Center, USA
  2. 2Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, USA
  3. 3University of Stirling, UK
  4. 4University of Nottingham, UK
  5. 5Department of Internal Medicine, University of Michigan, USA
  6. 6Karolinska Institutet; Sweden
  7. 7Loughborough University, UK
  8. 8Department of Anesthesiology, University of Michigan, USA.
  1. Corresponding author: Laurie J. Goodyear, E-mail: laurie.goodyear{at}joslin.harvard.edu

Abstract

Low aerobic exercise capacity is a risk factor for diabetes and strong predictor of mortality; yet some individuals are “exercise resistant”, and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease-risk, we used selective breeding for 15 generation to develop rat models of low- and high-aerobic response to training. Before exercise training, rats selected as low- and high-responders had similar exercise capacities. However, after 8-wks of treadmill training low-responders failed to improve their exercise capacity, while high-responders improved by 54%. Remarkably, low-responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the “exercise resistant” phenotype segregates with disease risk. Low-responders had impaired exercise-induced angiogenes0is in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low-responders. Low-responders had increased stress/inflammatory signaling and altered TGFβ signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease.

  • Received January 14, 2013.
  • Accepted April 13, 2013.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

This Article

  1. Diabetes
  1. Supplementary Data
  2. All Versions of this Article:
    1. db13-0062v1
    2. 62/8/2717 most recent