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OBJECTIVE—The �45-cM insulin-dependent diabetes 9 (Idd9)
region on mouse chromosome 4 harbors several different type 1
diabetes–associated loci. Nonobese diabetic (NOD) mice con-
genic for the Idd9 region of C57BL/10 (B10) mice, carrying
antidiabetogenic alleles in three different Idd9 subregions
(Idd9.1, Idd9.2, and Idd9.3), are strongly resistant to type 1
diabetes. However, the mechanisms remain unclear. This study
aimed to define mechanisms underlying the type 1 diabetes
resistance afforded by B10 Idd9.1, Idd9.2, and/or Idd9.3.

RESEARCH DESIGN AND METHODS—We used a reduction-
ist approach that involves comparing the fate of a type 1
diabetes–relevant autoreactive CD8� T-cell population, specific
for residues 206–214 of islet-specific glucose 6 phosphatase
catalytic subunit–related protein (IGRP206–214), in noncongenic
versus B10 Idd9–congenic (Idd9.1 � Idd9.2 � Idd9.3, Idd9.2 �
Idd9.3, Idd9.1, Idd9.2, and Idd9.3) T-cell receptor (TCR)–trans-
genic (8.3) NOD mice.

RESULTS—Most of the protective effect of Idd9 against 8.3-
CD8� T-cell–enhanced type 1 diabetes was mediated by Idd9.1.

Although Idd9.2 and Idd9.3 afforded some protection, the effects
were small and did not enhance the greater protective effect of
Idd9.1. B10 Idd9.1 afforded type 1 diabetes resistance without
impairing the developmental biology or intrinsic diabetogenic
potential of autoreactive CD8� T-cells. Studies in T- and B-cell–
deficient 8.3-NOD.B10 Idd9.1 mice revealed that this antidiabe-
togenic effect was mediated by endogenous, nontransgenic
T-cells in a B-cell–independent manner. Consistent with this, B10
Idd9.1 increased the suppressive function and antidiabetogenic
activity of the FoxP3�CD4�CD25� T-cell subset in both TCR-
transgenic and nontransgenic mice.

CONCLUSIONS—A gene(s) within Idd9.1 regulates the devel-
opment and function of FoxP3�CD4�CD25� regulatory T-cells
and, in turn, the activation of CD8� effector T-cells in the
pancreatic draining lymph nodes, without affecting their devel-
opment or intrinsic diabetogenic potential. Diabetes 59:272–
281, 2010

T
ype 1 diabetes in both humans and nonobese
diabetic (NOD) mice is the result of a complex
T-cell–mediated autoimmune process against
the pancreatic �-cells. Putative poorly defined

environmental triggers conspire with a constellation of
genetic elements scattered throughout the genome to elicit
a multifactorial autoimmune response that involves virtu-
ally every cell type of the immune system. Genome-wide
association studies in humans and mice have identified at
least 15 different chromosomal regions harboring candi-
date type 1 diabetes–associated gene loci, in addition to
the HLA and H-2 complexes on human and mouse chro-
mosomes 6 and 17, respectively (1–4).

The �45-cM insulin-dependent diabetes 9 (Idd9) region
on mouse chromosome 4 has a major effect on type 1
diabetes development (5). NOD mice congenic for the
Idd9 region of C57BL/10 (B10) mice are highly resistant to
type 1 diabetes (5). However, the underlying mechanisms
remain unclear. Initial work correlated protection from
type 1 diabetes with recruitment of antidiabetogenic
CD30/interleukin (IL)-4–expressing cell types into pancre-
atic islets (5). Subsequent studies, however, suggested that
alternative mechanisms might be at play. For example,
using NOD and NOD.B10 Idd9 mice expressing an insulin
promoter-driven influenza hemagglutinin transgene, Mar-
tinez et al. found that the B10 Idd9 region affords tolerance
to hemagglutinin-specific CD8� T-cells through a mecha-
nism that does not inhibit their activation in the pancreatic
lymph nodes (6). Another study suggested that Idd9
controls the recruitment of autoreactive CD4� T-cells to
the pancreas (7). A third study, using NOD mice congenic
for the Idd9/11 region, which partially overlaps B10 Idd9,
of nonobese resistant mice (8) supported the CD4� T-cell
intrinsic effect(s) of B10 Idd9 reported by Waldner et al.
(7). Additional investigations of congenic NOD mice car-
rying chromosome 4 fragments around the Idd9.1 region
of different lengths and donor strains reported effects of
Idd9 on invariant natural killer T (iNKT) cell (9), B-cell
(10,11), or dendritic cell (DC) biology (12), and even on
susceptibility of �-cells to cell death (13). This rather
extensive assortment of mechanisms seemingly unrelated
to one another clearly indicates that the effects of Idd9 on
type 1 diabetes are complex and suggest that the pheno-
types are probably determined by more than one gene
within the Idd9 region. In fact, it has been established
from congenic strain mapping that the B10 Idd9 region
contains at least three type 1 diabetes–associated genes:
Idd9.1, Idd9.2, and Idd9.3 (5). A congenic strain having
the Idd9.2 � Idd9.3 protective subregions (R11) was more
susceptible to type 1 diabetes than the strain having all
three congenic subregions (R28). However, the R11 strain
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was more protected from type 1 diabetes than the R35
strain that has a type 1 diabetes–protective B10-derived
allele at only Idd9.3.

This study was initiated to dissect mechanisms under-
lying the type 1 diabetes resistance afforded by B10 Idd9

loci. We used a reductionist experimental approach (14)
that involves comparing the fate and diabetogenicity of a
type 1 diabetes–relevant autoreactive CD8� T-cell popula-
tion in B10 Idd9–congenic versus noncongenic, T-cell
receptor (TCR)–transgenic NOD mice. Our data show that
the B10-derived Idd9.1 subregion has a powerful suppres-
sive effect on the diabetogenic activity of a prevalent
monospecific CD8� T-cell population without impairing its
developmental biology or intrinsic diabetogenic potential.
We find that this antidiabetogenic effect is mediated by
endogenous, nontransgenic T-cells but not B-cells, and
show that it is associated with enhanced regulatory activ-
ity of CD4�CD25� regulatory T-cells not only in TCR-
transgenic, but also nontransgenic, NOD.B10 Idd9.1 mice.

RESEARCH DESIGN AND METHODS

Mice. 8.3-NOD and 8.3-NOD.Rag2�/� mice have been described (15).
NOD.B10 Idd9R28 (line 1104)–, NOD.B10 Idd9R11 (line 1105)–, and NOD.B10
Idd9.3 (line 1106)–congenic mice were developed as described previously (5).
Development of the NOD.B10 Idd9.1 (line 1565) and NOD.B10 Idd9.2 (line
1566) strains and the fine-mapping of Idd9.1 and Idd9.2 will be the subjects of
future reports. 8.3-NOD.B10 Idd9R28, 8.3-NOD.B10 Idd9R11, 8.3-NOD.B10
Idd9.1, 8.3-NOD.B10 Idd9.2, and 8.3-NOD.B10 Idd9.3 mice were established
by crossing 8.3-NOD mice with NOD.B10 Idd9R28 (line 1104), NOD.B10
Idd9R11 (line 1105), NOD.B10 Idd9.1 (line 1565), NOD.B10 Idd9.2 (line 1566),
and NOD.B10 Idd9.3 (line 1106) mice, respectively. The line number associ-
ated with each strain refers to the unique line designation for strains bred at
Taconic (Germantown, NY). Lines 1565, 1566, and 1106 are available from
Taconic through the Emerging Models Program. Lines 1104 and 1105 are no
longer extant. Figure 1A shows a map of the congenic strains used in this
study in comparison to Idd9-congenic strains described by others (9,16,17).
Lines 1565, 1566, and 1106 contain the B10 Idd9.1, Idd9.2, and Idd9.3 regions
alone, respectively. The markers that define the boundaries of the lines
described here are given in supplementary Table 1 (available in an online
appendix at http://diabetes.diabetesjournals.org/content/early/2009/10/14/
db09-0648/suppl/DC1), along with the primer sequences of novel markers
developed for this study. Supplementary Fig. 1 lists the single nucleotide
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FIG. 1. Antidiabetogenic effects of different B10 Idd9 intervals on 8.3-CD8� T-cell–enhanced type 1 diabetes. A: Chromosome 4, B10
Idd9–congenic NOD lines used in this and other studies (9,16). B: Incidence of diabetes in female 8.3-NOD (n � 38), 8.3-NOD.B10 Idd9R28 (n �
22), and 8.3-NOD.B10 Idd9R11 (n � 31) mice. C: Incidence of diabetes in NOD (n � 67) compared with NOD.B10 Idd9.1 (n � 58), NOD.B10 Idd9.2

(n � 57), and NOD.B10 Idd9.3 (n � 67) female mice. D: Incidence of diabetes in female 8.3-NOD (n � 38), 8.3-NOD.B10 Idd9.1 (n � 100),
8.3-NOD.B10 Idd9.2 (n � 94), and 8.3-NOD.B10 Idd9.3 (n � 85) mice. The Kaplan-Meier survival curves were compared with log-rank test.
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polymorphisms (SNPs) distinguishing B10, B6, and NOD in the Idd9.1 region
defined by line 1565. All genes containing polymorphisms are noted. Also
noted are the regions of overlap of the B10 Idd9 congenic line with R201 of
Ueno et al. (9) and the two Brodnicki et al. (16,17) B6 Idd9/Idd11–congenic
lines defining the smallest Idd11 interval published to date. Information on the
congenic strains is also available at http://www.t1dbase.org/page/DrawStrains
(select the strain of interest). Note that the B10 Idd9 fragment in line 1565
overlaps the distal 30% of the B10 Idd9.1 fragment carried by the R201 strain
from Ueno et al., and that Brodnicki et al.’s Idd11-congenic strains were
produced using B6 donor mice. The 8.3-NOD.Ig��/�, 8.3-NOD.B10 Idd9.1/

Ig��/�, and 8.3-NOD.B10 Idd9.1/Rag2�/� mice were established by crossing
8.3-NOD and 8.3-NOD.B10 Idd9.1 with NOD.Ig��/� and NOD.Rag2�/� mice,
respectively, followed by backcrossing 8.3-TCR�, mutant heterozygous F1
mice to 8.3-NOD.B10 Idd9.1 mice and intercrossing 8.3-TCR�, mutant het-
erozygous B10 Idd9.1 homozygous littermates. All mice were housed in
specific pathogen-free conditions.
Peptides and antibodies. Peptides (NRP-A7 and TUM) were purchased from
Mimotopes (Clayton, Victoria, Australia). All monoclonal antibodies (mAbs)
were purchased from PharMingen (San Diego, CA), unless indicated other-
wise. Anti-mouse glucocorticoid-induced tumor necrosis factor receptor
(GITR), anti-mouse/rat FoxP3, and anti–folic receptor 4 (FR4) were from
eBiosciences (San Diego, CA). Streptavidin-peridinin-chlorophyll-protein
complex was from Becton Dickinson (San Jose, CA).
Preparation of DCs. Mesenteric lymph node (MLN) and pancreatic lymph
node (PLN) DCs were purified from collagenase-digested MLNs and PLNs
using anti-CD11c mAb-coated magnetic beads (Miltenyi Biotec). Purified DCs
were pulsed with NRP-A7 or TUM peptides (1 �mol/l) for 1 h at 37°C and then
used in proliferation and cytokine secretion assays using 8.3-CD8� T-cells as
responders.
Diabetes and insulitis. Diabetes was monitored by measuring urine glucose
with Diastix (Bayer, ON, Canada); animals were considered diabetic after two
readings �3�. Differences between diabetes survival curves were compared
with the Kaplan-Meier log-rank test using Prism software (Graphpad). Insulitis
scores were measured on 14 hematoxylin-eosin–stained pancreas sections 150
�m apart, using the following criteria: 0, intact islet; 1, peri-insulitis; 2, up to
25% of the islet infiltrated; 3, 25–50% infiltration; 4, �50% infiltration.
Proliferation and cytokine secretion assays. Splenic CD8� T-cells (2 �
104/well) were incubated with NRP-A7/TUM peptide-pulsed (0.0001–1 �mol/l)
antigen-presenting cells (APCs; 105 irradiated splenocytes/well) for 2 or 3 days
(for cytokine and proliferation assays, respectively) at 37°C in 5% CO2.
Cytokines in the supernatants were measured by enzyme-linked immunosor-
bent assay. The 3-day cultures were pulsed with 1 �Ci [3H] thymidine during
the last 18 h and harvested. The regulatory activity of CD4�CD25� T-cells was
measured by adding 0.125–1 � 104 CD4�CD25� T-cells preactivated with
anti-CD3 mAb and recombinant (r)IL-2 to CD8� cell–APC cocultures for 48 h
(interferon � [IFN-�] content measurements) or 72 h (proliferative activity,
assessed by [3H] incorporation during the last 18 h of culture).
Cytotoxic T-lymphocyte differentiation and 51Cr release assays. Splenic
CD8� T-cells purified from 8.3-NOD and 8.3-NOD.B10 Idd9.1 mice using
anti-CD8–coated microbeads (Miltenyi Biotec) (2 � 104 cells/well) were
stimulated with NRP-A7–pulsed irradiated NOD splenocytes (105 cells/well)
for 3 days and expanded in 0.5 units/ml of rIL-2 (Takeda, Osaka, Japan) for
7–10 days. Cytolytic activity of cytotoxic T-lymphocytes (CTLs) was measured
using NRP-A7– or TUM-pulsed (1 �mol/l) RMA-SKd cells.
T-cell transfers. Splenic CD8� T-cells were purified using iMAG CD8 beads
(BD Bioscience) following the manufacturer’s protocols, labeled with car-
boxyfluorescein succinimidyl ester (CFSE; 2.5 �mol/l), and injected intrave-
nously (107 CD8� T-cells) into 9- to 11-week-old hosts (NOD or NOD.B10
Idd9.1). Hosts were killed 6 days later and their PLNs and MLNs examined for
presence of CD8� CFSE� cells. To purify CD4�CD25� cells, lymph node
and/or splenic cells were enriched for CD4� cells, incubated with anti–CD25-
phycoerythrin (PE), and separated using anti-PE mAb-coated beads (Miltenyi
Biotec). The purity was �85% for CD4�CD25� cells. The mice were injected
intravenously with 2 � 105 cells and monitored for diabetes for 15 weeks.
Statistical analyses. Data were compared using log-rank, Mann-Whitney U,
or two-way ANOVA tests.

RESULTS

The B10 Idd9 region suppresses CD8� T-cell–induced
diabetes predominantly via Idd9.1. To determine
whether the B10-derived Idd9 region that protects from
spontaneous type 1 diabetes can also protect from disease
accelerated by the presence of a diabetogenic TCR, we
introgressed two copies of the B10 Idd9.1-9.3 and Idd9.2-
Idd9.3 intervals (Fig. 1A) into transgenic NOD mice ex-

pressing a diabetogenic T-cell receptor, 8.3 (15). This TCR
is representative of a large fraction of islet-associated
CD8� T-cells in NOD mice that use highly homologous
TCR	 chains (15,18,19) and recognize the mimotopes
NRP-A7 and NRP-V7 in the context of the major histocom-
patibility complex (MHC) molecule H-2Kd (20). These
T-cells are already a significant component of the earliest
NOD islet CD8� infiltrates (19–21), are pathogenic (15,18),
target a peptide from islet-specific glucose 6 phosphatase
catalytic subunit–related protein (IGRP206–214, similar to
NRP-A7) (22), and are unusually frequent in the periphery
(�1/200 CD8� T-cells) (23).

8.3-NOD.B10 Idd9R28 mice, carrying the complete B10
Idd9 interval that affords �95% protection from spontane-
ous type 1 diabetes (5), displayed a significantly reduced
frequency of diabetes compared with their noncongenic
8.3-NOD counterparts (�40 vs. 80%) (Fig. 1B). The shorter
B10 Idd9.2-Idd9.3 (Idd9R11) interval, which provides 60%
protection from spontaneous type 1 diabetes (5), was also
antidiabetogenic, but to a much lesser extent (Fig. 1B). To
ascertain whether the higher antidiabetogenic effect of
Idd9 was due to additive/synergistic effects of loci con-
tained in different subregions, we developed 8.3-NOD mice
congenic for each of the individual Idd9 intervals (Idd9.1,
Idd9.2, and Idd9.3); each of the individual Idd9 congenic
regions affords non–TCR-transgenic NOD mice protection
from spontaneous type 1 diabetes as shown in Fig. 1C. The
fine-mapping of the Idd9.1 and Idd9.2 regions is in
progress and will be the subject of separate reports
(D.B.R. et al. and Hamilton-Williams et al., manuscripts in
preparation). The Idd9.3 region is 1.2 Mb with only 15
genes, including the prime candidate Tnfrsf9, which en-
codes 4–1bb (also known as CD137) (24–26). As shown in
Fig. 1D, the incidence of diabetes in 8.3-NOD.B10 Idd9.1
mice was virtually identical to that seen in 8.3-NOD.B10
Idd9R28 mice, suggesting a minor contribution of the B10
Idd9.2 and Idd9.3 alleles on 8.3-CD8� T-cell–enhanced
type 1 diabetes. In agreement with these observations, the
diabetes survival curves corresponding to 8.3-NOD.B10
Idd9.2 and 8.3-NOD.B10 Idd9.3 mice were remarkably
similar to those seen in 8.3-NOD.B10 Idd9R11 mice. This
is in contrast to what occurs in nontransgenic NOD mice,
where Idd9.2 and Idd9.3 augment the antidiabetogenic
effects of each other and of Idd9.1 (5). Because the Idd9.1
interval is as protective in 8.3-NOD mice as it is in
non–TCR-transgenic NOD mice (5), these data suggest
that expression of the diabetogenic TCR overwhelms the
antidiabetogenic properties of Idd9.2 and Idd9.3, but not
the effects of Idd9.1.
The B10 Idd9.1 allele suppresses 8.3-CD8� T-cell–
enhanced diabetes and insulitis without compromis-
ing 8.3-CD8� T-cell development or function. Because
the antidiabetogenic effect of the B10 Idd9.1 region in
8.3-NOD.B10 Idd9.1 mice was associated with slower
progression of insulitis (Fig. 2A), we asked whether this
region’s antidiabetogenic activity was mediated by effects
on the developmental biology of 8.3-CD8� T-cells. Cytoflu-
orometric studies indicated that the thymi and spleens of
both types of mice contained similar absolute and relative
numbers of double-positive CD4�CD8� thymocytes and/or
single-positive CD4� or CD8� T-cells, respectively (Fig. 2B
and data not shown). In addition, the transgenic CD8�

T-cells of both types of mice expressed comparable levels
of the transgenic V�8.1� TCR and CD8 (Fig. 2C), and
bound NRP-V7/Kd and IGRP206–214/Kd tetramers (recog-
nized with high and intermediate avidity, respectively)
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with similar frequency (Fig. 2D) and mean fluorescence
intensity (Fig. 2E).

Functional in vitro assays revealed that the splenic
CD8� T-cells of both types of mice proliferated equally
well and secreted similar levels of IFN-� and IL-2 in
response to NRP-A7 peptide stimulation over a range of
concentrations (Fig. 3A). Likewise, in vitro–differentiated
8.3-CD8� T-cells from both strains killed peptide-pulsed
target cells with similar efficiency (Fig. 3B).

Similar results were obtained in vivo. CFSE-labeled
8.3-CD8� T-cells from 8.3-NOD.B10 Idd9.1 mice prolifer-
ated in the pancreatic (but not mesenteric) lymph nodes
(PLNs and MLNs, respectively) of wild-type NOD hosts as
efficiently as those derived from 8.3-NOD donors (Fig. 3C).

Taken together, these observations indicated that the
B10 Idd9.1 allele does not impair the development or
function of IGRP206–214-reactive CD8� T-cells.
CD8� T-cell–extrinsic inhibition of 8.3-CD8� T-cell
activation by B10 Idd9.1 in vivo. Whereas CFSE-labeled
8.3-CD8� T-cells proliferated equally well in vivo regard-
less of the Idd9.1 genotype of the donor mice, CFSE-
labeled 8.3-CD8� T-cells from both 8.3-NOD and 8.3-
NOD.B10 Idd9.1 mice proliferated significantly less in the

PLNs of NOD.B10 Idd9.1 hosts than in the PLNs of NOD
hosts (Fig. 3C and D), without any obvious effects on the
relative or absolute numbers of recruited/retained 8.3-
CD8� T-cells (Fig. 3E). This suggested that B10 Idd9.1
somehow impairs the cross-priming of 8.3-CD8� T-cells by
endogenous autoantigen-loaded dendritic cells. This was
not due to interstrain differences in autoantigen loading of
DCs in vivo but rather to impaired PLN DC function
because whereas ex vivo, NRP-A7–pulsed DCs purified
from the MLNs of NOD and NOD.B10 Idd9.1 mice could
stimulate naive 8.3-CD8� T-cells with similar efficiency,
NRP-A7–pulsed DCs purified from the PLNs of NOD.B10
Idd9.1 mice could not do so as efficiently as NRP-A7–
pulsed DCs purified from the PLNs of NOD mice (Fig. 3F).
Suppression of 8.3-CD8� T-cell–enhanced diabetes
by the B10 Idd9.1 region requires endogenous T- but
not B-cells. To ascertain whether the CD8� T-cell–extrin-
sic effects of B10 Idd9.1 on 8.3-CD8� T-cell cross-priming
in vivo were associated with B10 Idd9.1’s antidiabetogenic
activity, we introduced a recombination activating gene
(Rag2) deficiency into 8.3-NOD and 8.3-NOD.B10 Idd9.1
mice. Although penetrance of type 1 diabetes in 8.3-
NOD.Rag2�/� mice is significantly lower than in 8.3-NOD
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mice (owing to lack of CD4� T-cell help) (15), the inci-
dence of diabetes in 8.3-NOD.Rag2�/� and 8.3-NOD.B10
Idd9.1/Rag2�/� mice was essentially the same (Fig. 4A),
indicating that the RAG-2 deficiency had completely abro-
gated the antidiabetogenic effects of the B10 Idd9.1 allele.

Because these mice export only 8.3-CD8� T-cells (but not
CD4� T-cells or B-cells) to the peripheral lymphoid organs
(15), we reasoned that the protective activity of B10
Idd9.1 was mediated by endogenous T-cells and/or B-cells.
To distinguish between these two possibilities, we intro-
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correspond to the standard errors of the means. P values were
calculated with Mann-Whitney U test.
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duced an immunoglobulin � heavy chain gene (Ig�)
deficiency into 8.3-NOD and 8.3-NOD.B10 Idd9.1 mice and
followed both types of B-cell–deficient mice for develop-
ment of diabetes. B-cell–deficient 8.3-NOD.Ig��/� mice
developed diabetes essentially like B-cell–competent 8.3-
NOD mice, indicating that type 1 diabetes development in
the 8.3-NOD model, unlike the case in nontransgenic NOD
mice, is B-cell independent (Fig. 4B). In contrast, 8.3-
NOD.B10 Idd9.1/Ig��/� mice remained protected from
type 1 diabetes despite lacking B-cells, indicating that the
protective effects of the B10 Idd9.1 region are B-cell
independent and mediated by endogenous T-cells.
The B10 Idd9.1 region enhances the development and
function of FoxP3�CD4�CD25� regulatory T-cells.
Prompted by these findings and the observation that the
protective effect of the B10 Idd9.1 interval of line 1565 was
not associated with increased development of thymic
iNKT cells (9) (supplementary Fig. 2), we investigated
whether B10 Idd9.1 might enhance the development
and/or function of FoxP3�CD4�CD25� regulatory T-
cells (Tregs). We compared the relative size of the
FoxP3�CD4� T-cell subset in thymuses, spleens, MLNs,

and PLNs of 8.3-NOD and 8.3-NOD.B10 Idd9.1 mice. The
lymphoid organs of 8.3-NOD.B10 Idd9.1 mice contained
higher percentages (albeit not absolute numbers) of
FoxP3�CD4� T-cells than those of 8.3-NOD mice, al-
though the differences were relatively small and statisti-
cally significant only for thymuses and MLNs (Fig. 5A and
B, and supplementary Fig. 3A). These differences were not
a peculiarity of TCR-transgenic mice, because the thy-
muses and MLNs of nontransgenic NOD.B10 Idd9.1 mice
also contained significantly higher percentages of these
T-cells compared with NOD mice (Fig. 5C). As expected,
there were no differences in the percentages of FoxP3�

T-cells within the CD4�CD25� T-cell subsets (Fig. 5A and
C). These CD4�CD25� T-cells had all the hallmarks of
CD4�CD25� Tregs described in other strains: they ex-
pressed GITR, FR4, CD134, and transforming growth fac-
tor � (TGF-�; Fig. 5D), and produced IFN-�, IL-4, and IL-10
when stimulated with plate-bound anti-CD3 mAb in the
presence, but not absence, of rhIL-2 (Fig. 5E). The
CD4�CD25� T-cells of transgenic and nontransgenic NOD
and NOD.B10 Idd9.1 mice expressed similar levels of all
these markers, including CD25 and FoxP3 (Fig. 5F and
data not shown).

We next asked whether these B10 Idd9.1-associated
differences in the relative size of the FoxP3�CD4�CD25�

Treg subset were accompanied by differences in suppres-
sive activity. We first compared the ability of CD4�CD25�

(and CD4�CD25�) T-cells purified from NOD.B10 Idd9.1
and NOD mice to suppress the activation of naive 8.3-
CD8� T-cells from 8.3-NOD mice in response to NRP-A7
peptide–pulsed APCs. The CD4�CD25� T-cells purified
from 8.3-NOD.B10 Idd9.1 or NOD.B10 Idd9.1 mice
had significantly higher regulatory activity than the
CD4�CD25� T-cells purified from 8.3-NOD or NOD mice,
respectively, at different CD4�CD25�/CD8� T-cell ratios
(Fig. 6A and B, and supplementary Fig. 3B). The
CD4�CD25� T-cells of both types of mice were not
suppressive in these assays (data not shown), as described
previously (27). These strain differences in Treg function
were also true in vivo. Whereas 8.3-NOD.Rag2�/� hosts
transfused with CD4�CD25� T-cells from wild-type NOD
donors developed spontaneous diabetes essentially like non-
manipulated 8.3-NOD.Rag2�/� mice (15), 8.3-NOD.Rag2�/�

hosts transfused with CD4�CD25� T-cells from NOD.B10
Idd9.1 mice remained diabetes free throughout the follow-up
period (Fig. 6C).

Taken together, these data are consistent with the idea
that diabetes resistance afforded by the B10 Idd9.1 inter-
val is mediated, at least in part, by enhanced development
and function of CD4�CD25� regulatory T-cells.

DISCUSSION

Analyses of Idd-congenic NOD mice, in which type 1
diabetes–associated chromosomal regions are replaced by
the corresponding regions found in nondiabetes-prone
strains of mice, such as B6 and B10, have demonstrated
the existence of more than 20 non–MHC-linked type 1
diabetes–associated regions/loci (1,28). The nature of the
genes that are responsible for these associations has been
resolved for only a few Idd regions, including Idd16-�2m
(29), Idd3-Il2 (14), Idd5.1-Ctla4 (30,31), and Idd5.2-
Nramp1 (30,32,33). Furthermore, with the exception of
Idd3 (14), which controls Treg development and function,
the mechanisms by which most of these loci contribute to
the diabetogenic process remain unclear.
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The current study aimed to elucidate mechanisms un-
derlying the resistance to type 1 diabetes afforded by B10
Idd9 (5), to help pave the way toward eventual identifica-
tion of the responsible gene. We compared the fate and
diabetogenicity of a type 1 diabetes–relevant autoreactive
CD8� T-cell population in B10 Idd9–congenic versus
noncongenic TCR-transgenic NOD mice. We found that
this reductionist system, which has enabled us to solve
Idd3 (14), is not informative to dissect mechanisms under-
lying Idd9.2- and Idd9.3-linked suppression, presumably
because the large size of the transgenic CD8� T-cell
population born by these mice largely overwhelms the
corresponding antidiabetogenic mechanisms. This, how-
ever, was not the case for Idd9.1. Our data show that
Idd9.1 regulates the suppressive activity and antidiabeto-
genic potential of FoxP3�CD4�CD25� Tregs. Tregs arising
in B10 Idd9.1–congenic NOD mice were significantly more
suppressive and antidiabetogenic than those arising in
NOD mice. Because FoxP3�CD4� T-cells suppress diabe-
togenic T-cell responses, at least in part, by inhibiting DCs
in the pancreatic draining lymph nodes (27), these obser-
vations are consistent with the suboptimal ability of au-
toantigen-loaded (in vivo) and peptide-pulsed (ex vivo)
PLN DCs from NOD.B10 Idd9.1 mice to support 8.3-CD8�

T-cell activation, both in vitro and in vivo; selective
suppression of PLN DCs in these mice may result from
cognate suppression of autoantigen-loaded DCs, which
predominantly (if not exclusively) reside in the PLNs, by

local autoregulatory CD4�CD25� Tregs. Accordingly, we
propose that B10 Idd9.1–“enhanced” Tregs contribute to
B10 Idd9.1–linked type 1 diabetes inhibition by suppress-
ing the activation of CD8� (and possibly other) effector
T-cells in the pancreatic draining lymph nodes, without
affecting their developmental biology or intrinsic diabeto-
genic potential. These data might explain the observations
of Chamberlain et al. in mice expressing a rat insulin
promoter-driven tumor necrosis factor 	 transgene, in
which B10 Idd9.1 somehow suppressed the ability of
CD8� T-cells to respond to islet-infiltrating APCs (34). The
results are also compatible with the DC phenotype de-
scribed by O’Keeffe et al. (12), with the caveat that this
congenic strain, unlike the one described here, was pro-
duced using B6, as opposed to B10, donor mice and that
B10 and B6 DNAs differ substantially in the distal region of
chromosome 4 (supplementary Fig. 1). These observa-
tions, however, do not exclude, and are compatible with,
possible effects of Idd9.1 polymorphisms on other lym-
phocyte populations. For example, it has been reported
that a B10 chromosome 4 region partially overlapping the
B10 Idd9.1 fragment studied here restores impaired iNKT
cell development and an iNKT cell–related DC phenotype
described in NOD mice (9). Our congenic line 1565,
however, bears a B10 chromosome 4 fragment that over-
laps only the distal 30% of the B10 chromosome 4 fragment
present in Ueno et al.’s R201 line. Furthermore, line 1565
does not display Ueno et al.’s iNKT cell phenotype, sug-
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gesting that this phenotype is encoded in a gene that is not
in the overlapping region. Also, our work does not exclude
possible effects of genes within Idd9.1, Idd9.2, and/or
Idd9.3 on peripheral tolerance of autoreactive T-cell
clones other than those expressing the 8.3-TCR (35), such
as for example CD8� T-cells recognizing IGRP206–214 with
higher avidity (36).

It is intriguing that the effects of the B10 Idd9.1 allele on
Treg function and type 1 diabetes susceptibility ob-
served in this study are remarkably similar to those we
have described recently for B6 Idd3, where Treg devel-
opment and function are enhanced by increased tran-
scriptional activity of Il2 (14). Accordingly, it is
tempting to suspect that regulatory lymphocytes, includ-
ing the FoxP3�CD4�CD25� subset, may be common tar-
gets of type 1 diabetes–associated chromosomal regions.
This hypothesis is compatible with what we know about
the type 1 diabetes gene associations in humans. In
addition to the IL2-IL21 region on human chromosome
4q27 (2,4,37), and IL2RA on chromosome 10p15.1, which
encodes CD25, the high-affinity receptor for IL-2 expressed
by activated T-cells, and FoxP3�CD4�CD25� Tregs (37–
40), several other candidate human type 1 diabetes–
associated loci play a role in Treg development and
function. For example, the type 1 diabetes susceptibility
gene CTLA4 on chromosome 2q33.2 encodes a negative
regulator of T-cell–mediated immunity (31,41,42). The
susceptibility allele generates reduced levels of an alter-
natively spliced transcript that encodes the soluble form of
CTLA-4, which has been correlated with variations in the
peripheral frequency of CD4�CD25� Tregs, which consti-
tutively express CTLA-4 (43). PTPN22 on chromosome
1p13.2, associated with susceptibility to a number of

autoimmune diseases, including type 1 diabetes (40,
44–46), encodes lymphoid tyrosine-phosphatase (LYP),
another negative regulator of T-cell activation. A nonsyn-
onymous polymorphism (R620W) abolishes the binding of
Csk, a negative regulatory kinase, to LYP. Consequently,
the R620W LYP variant results in a gain of function that
presumably enables LYP to more effectively suppress
T-cell signaling compared with the non–type 1 diabetes–
associated variants. It has been suggested that PTPN22
polymorphisms contribute to autoimmune disease suscep-
tibility by impairing negative selection of autoreactive
thymocytes and by decreasing the number and function of
CD4�CD25� Tregs (47,48). Another locus possibly impli-
cated in autoimmune disease susceptibility by modulating
T-cell signaling is PTPN2 on chromosome 18p11.21, a
nonreceptor type 2 tyrosine phosphatase that is a negative
regulator of T-cell signaling (2).

The fine-mapping of Idd9.1 has not progressed suffi-
ciently to productively comment on candidate genes
present in the region. The B10-derived congenic interval
present in the Idd9.1 strain used in this study (line 1565)
has 329 annotated genes in this 18.5-Mb segment. The
Idd11 region as defined by B6-derived congenic strains
(16) is an �8-Mb region that is wholly contained within the
Idd9.1 interval defined by the congenic strain used in this
study. However, B6 and B10 are not identical by descent
throughout the overlapping region (http://phenome.jax.
org); from SNP analyses, B6 and B10 differ at 32.3% of the
SNPs within the 8-Mb Idd9.1/Idd11 interval (supplemen-
tary Fig. 1). Notably, within this 8 Mb, there are small
regions that appear to be identical-by-descent for B6 and
B10, including �200 kb surrounding Lck, a previously
highlighted candidate gene in the Idd9.1 region (16),
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where the ancestral haplotype shared by the B6 and B10
strains differs from that present in NOD mice (supplemen-
tary Fig. 1). Further fine-mapping and gene expression
studies are required to define the genes that are responsi-
ble for Idd9.1- and Idd11-mediated type 1 diabetes pro-
tection and to determine whether the protective alleles are
indeed shared by the B6 and B10 strains in this region.

In conclusion, we have shown that the B10 Idd9.1 locus
affords diabetes resistance, at least in part, by promoting
the function of CD4�CD25� regulatory T-cells without
altering the developmental biology of effector CD8�

T-cells.
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