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OBJECTIVE—The dominant-negative P467L mutation in perox-
isome proliferator activated receptor-� (PPAR�) was identified in
insulin-resistant patients with hyperglycemia and lipodystrophy.
In contrast, mice carrying the corresponding Pparg-P465L mu-
tation have normal insulin sensitivity, with mild hyperinsulin-
emia. We hypothesized that murine Pparg-P465L mutation leads
to covert insulin resistance, which is masked by hyperinsulin-
emia and increased pancreatic islet mass, to retain normal
plasma glucose.

RESEARCH DESIGN AND METHODS—We introduced in
PpargP465L/� mice an Ins2-Akita mutation that causes improper
protein folding and islet apoptosis to lower plasma insulin.

RESULTS—Unlike Ins2Akita/� littermates, male PpargP465L/�

Ins2Akita/� mice have drastically reduced life span with en-
hanced type 1 diabetes. Hyperglycemia in Ins2Akita/� females is
mild. However, PpargP465L/�Ins2Akita/� females have aggravated
hyperglycemia, smaller islets, and reduced plasma insulin. In an
insulin tolerance test, they showed smaller reduction in plasma
glucose, indicating impaired insulin sensitivity. Although glu-
coneogenesis is enhanced in PpargP465L/�Ins2Akita/� mice com-
pared with Ins2Akita/�, exogenous insulin equally suppressed
gluconeogenesis in hepatocytes, suggesting that PpargP465L/�

Ins2Akita/� livers are insulin sensitive. Expression of genes
regulating insulin sensitivity and glycogen and triglyceride con-
tents suggest that skeletal muscles are equally insulin sensitive.
In contrast, adipose tissue and isolated adipocytes from
PpargP465L/�Ins2Akita/� mice have impaired glucose uptake in
response to exogenous insulin. PpargP465L/�Ins2Akita/� mice
have smaller fat depots composed of larger adipocytes, suggest-
ing impaired lipid storage with subsequent hepatomegaly and
hypertriglyceridemia.

CONCLUSIONS—PPARg-P465L mutation worsens hyperglyce-
mia in Ins2Akita/� mice primarily because of adipose-specific
insulin resistance and altered storage function. This underscores
the important interplay between insulin and PPAR� in adipose
tissues in diabetes. Diabetes 59:2890–2897, 2010

D
iabetes is a major health care challenge in itself
and significantly increases cardiovascular dis-
ease morbidity and mortality. As a multifacto-
rial, chronic disease, diabetes emanates from

the complex interaction of genetic and environmental
influences. Among the many factors presumed or shown to
contribute to its pathology, peroxisome proliferator acti-
vated receptor-� (PPAR�) is an important candidate.
PPAR� is a nuclear receptor and is necessary for adipo-
cyte differentiation and triglyceride deposition (1). Activa-
tion of PPAR� has already provided therapeutic potential.
One group of its synthetic ligands, the thiazolidinedione
drugs, has found applications as antidiabetic agents (2).

Various point mutations in PPAR� that affect adipose
tissue distribution and insulin sensitivity have been iden-
tified in humans. For example, the PPARG-P12A polymor-
phism in humans is associated with reduced body weight
and increased insulin sensitivity (3). Increased PPAR�
activity in PPARG-P115Q mutation is associated with
severe obesity and mild insulin resistance (4). Conversely,
two dominant negative mutations resulting in decreased
PPAR� activity, PPARG-P467L and PPARG-V290M, were
reported in patients with severe insulin resistance (5). To
date, different mouse models have demonstrated the role
of PPAR� in varied metabolic processes. Lack of Pparg

causes embryonic lethality in mice (6,7), and the Pparg-
null embryos have no perceptible adipose tissue (6,8).
Tissue-specific Pparg knockouts in liver (9) and skeletal
muscle (10) exhibit insulin resistance. In contrast, absence
of Pparg in �-cells does not affect glucose homeostasis,
although it increases �-cell mass (11). Animals entirely
lacking Pparg are nonviable, and tissue-specific knockouts
offer a strategy for artificial manipulation that is only
possible within experimental settings. Thus, an important
step is to extend this work to study the role of PPAR� in
a context applicable to human patients.

The dominant-negative heterozygous PPARG-P467L mu-
tation was originally identified in patients with severe
insulin resistance, hyperglycemia, lipodystrophy, and hy-
pertension (5). However, mice carrying the corresponding
Pparg-P465L mutation (L/� or L) exhibit normal plasma
glucose and insulin sensitivity (12,13). These mice have
mild hyperinsulinemia and increased pancreatic islet
mass, especially on high-fat diet (12). In this study, we
attempted to understand whether the observed insulin-
resistance phenotype in human patients is indeed attrib-
utable to L/� mutation or a mere association. We
hypothesized that mice carrying the L/� mutation have
covert insulin resistance; however, the simultaneous oc-
currence of islet hyperplasia and hyperinsulinemia com-
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pensates for this insulin resistance to retain normal
plasma glucose.

Improper folding of insulin due to the C96Y Ins2-Akita
mutation causes endoplasmic reticulum stress and �-cell
apoptosis, leading to reduced plasma insulin (14). The
mutation only affects �-cells, and the heterozygous Akita
mice develop consistently elevated plasma glucose levels
early in postnatal life. Consequently, Akita model is
uniquely suited to test our prediction that, with reduced
insulin production, the PpargP465L/� mice would be unable
to compensate for the peripheral insulin resistance. We
show here that the Akita females with PpargP465L/� muta-
tion have increased severity of hyperglycemia and insulin
resistance restricted to adipose tissue.

RESEARCH DESIGN AND METHODS

PpargP465L/� Ins2Akita/� double mutant mice. Heterozygous male
PpargP465L/� mice on 129/SvEvTac background (12) were mated with het-
erozygous female Ins2Akita/� mice on C57BL/6J background (Jackson Lab
stock no. 003548). Experimental mice were F1 littermates: PpargP465L/�

Ins2Akita/� (LA), Pparg�/� Ins2Akita/�(WA), PpargP465L/�Ins2�/� (L�), and
wild-type (W�) used at 3 and 7 months for characterization of hyperglycemia
and to define the organ-specific phenotype, respectively. Mice were fed
regular chow (LabDiet 5P76; PMI Nutrition International) and were handled
with Institutional Animal Care and Use Committees approved procedures.
Biochemical determinations. Plasma concentrations of glucose, choles-
terol, nonesterified free fatty acids (NEFAs), and 3-hydroxybutyrate (3-HB)
were determined by kits from Wako (Richmond, VA). Triglyceride concentra-
tions were determined using kits from Stanbio (San Antonio, TX). Plasma
insulin and leptin were determined by ELISA (Crystal Chem Inc., Chicago, IL).
Pooled plasma samples (100 �l) were fractionated by fast protein liquid
chromatography using Superose 6 HR10/30 column (GE Healthcare, Piscat-
away, NJ). Plasma adiponectin was measured by an ELISA using murine
adiponectin-specific antibody (Sigma, St Louis, MO). Tissue glycogen content
was determined as difference of glucose contents before and after digestion
with Aspergillus niger amyloglycosidase (Sigma no. 046K8801) as described
(15).
Oral glucose tolerance test. After 4-h fast, 7-month-old female mice were
administered 1.3 mg/g body weight of D-glucose (Columbus Chemical Indus-
tries Inc, Columbus, WI) by oral gavage. Blood was collected before and at
indicated times after glucose administration to determine plasma glucose.
Intraperitoneal insulin tolerance test. An intraperitoneal insulin tolerance
test (IPITT) was performed. After 4-h fast, 7-month-old female mice were
injected intraperitoneally with insulin (Novolin; 0.5 units/kg body weight;
Novo Nordisk Inc, Princeton, NJ). Blood was collected before and at indicated
times after insulin injections to determine plasma glucose and NEFA.
Insulin-stimulated glucose uptake in adipose tissue. Inguinal and go-
nadal adipose tissues from two female mice from each genotype were cut into
small pieces (20–40 mg) under aseptic conditions and incubated in high
glucose Dulbecco’s modified Eagle’s medium supplemented with 100 IU/ml
penicillin and 100 �g/ml streptomycin (Sigma-Aldrich, St Louis, MO) in the
absence or presence of 100 nmol/l insulin (insulin solution from bovine
pancreas; Sigma-Aldrich). After 24 h, glucose reduction in the medium was
measured and results were normalized to explant weight (16,17).
Gene expression. Total RNA was purified using Automated Nucleic Acid
Workstation ABI 6,700, and real-time PCR was performed in ABI PRISM 7,700
Sequence Detector (Applied Biosystems). �-actin mRNA was used for nor-
malization. Primers and probes are available on request.
Morphological analysis. Paraffin sections from adipose tissue and pancreas
of female mice (n � 4) were stained with hematoxylin–eosin. Adipocyte size
was measured in �250 cells per mouse using ImageJ software. Mean
pancreatic islet area, the average from all islets identified on each section, was
determined.
Pyruvate tolerance test. After 14-h fast, 3-month-old female mice were
injected intraperitoneally with 2 mg/kg body weight of sodium pyruvate
(Sigma, St. Louis, MO). Blood was collected before and at indicated times
after injection to determine plasma glucose.
Glucose production from primary hepatocytes. Primary hepatocytes were
isolated as described (18) and plated on mouse-collagen IV coated plates.
Cells were washed twice with PBS to remove glucose and incubated for 16 h
in 500 �l medium containing 10 nmol/l dexamethasone, 0.5 mmol/l isobutyl-
methylxanthine with and without 2 mmol/l sodium pyruvate, and 100 nmol/l
insulin. Glucose concentration was measured in 100 �l medium.

2-deoxyglucose uptake. Hepatocytes were plated at 100,000 cells per well in
a 24-well plate and maintained in hepatocyte culture medium (Xenotech,
Lenexa, KS) for 24 h. The cells were washed with PBS and maintained in
serum-free medium containing 135 mmol/l NaCl, 5.4 mmol/l KCl, 1.4 mmol/l
CaCl2, 1.4 mmol/l MgSO4, and 10 mM Na4P2O7 for 30 min (19). 2-Deoxy-D[1-
3H]glucose (Perkin-Elmer) was added to a final concentration of 1 �Ci/ml, and
cells were incubated for 10 min (20). Cells were washed three times with PBS
and solubilized in 1 ml 1% SDS. Radioactivity in 350 �l aliquots was measured
in a scintillation counter. Glucose uptake was normalized to protein content
and expressed as milligrams of glucose per gram of protein. In a similar
experiment, primary adipocytes were isolated and 2-deoxy-D[1-3H]glucose
(Perkin-Elmer) uptake was measured in the absence or presence of 100 nmol/l
insulin as previously described (21,22).
Data analysis. Values are reported as mean � SEM. Statistical analyses were
conducted using two-way ANOVA with Pparg and Ins2 genotypes as two
factors. Student t test was used for comparisons between groups, and
differences were considered to be statistically significant if P � 0.05.

RESULTS

Increased hyperglycemia in Ins2
Akita/� mice carrying

the Pparg-P465L mutation. From our breeding scheme,
we obtained F1 mice with four genotypes: wild-type
(W�), PpargP465L/�(L�), Ins2Akita/�(WA), and PpargP465L/�

Ins2Akita/� (LA) mice. The mice were born in the expected
Mendelian ratio; however, all LA male mice died before 150
days, demonstrating significantly reduced survival (Fig. 1A).
In contrast, �85% WA males survived and all W� and L�
males survived to this age. Younger LA males at 6 weeks of
age had higher fasting plasma glucose (LA, 577 � 31, and WA,
494 � 40 mg/dl, n 	 6; Fig. 1B) and triglyceride compared
with WA mice, although these increases did not reach
significance (supplementary Fig. 1A, available in an online
appendix at http://diabetes.diabetesjournals.org/cgi/content/full/
db10-0673/DC1). However, LA males had significantly higher
fasting plasma ketone body levels (LA, 407 � 23, and WA, 271 �
40 �mol/l, n � 4; P � 0.05, Fig. 1C), indicating a severe lack of
insulin and/or insulin resistance.

In contrast to LA males, LA females demonstrated
normal survival throughout 7 months of the study period.
We therefore focused on WA and LA females to under-
stand the effects of Pparg-P465L mutation on peripheral
insulin sensitivity and diabetes severity. Basic character-
ization of a set of 3-month-old mice is shown in supple-
mentary Table 1, available in an online appendix. The LA
double-mutant females had significantly higher fasting
plasma glucose compared with WA littermate controls.
This increase in plasma glucose was apparent at 3 months
of age (LA, 508 � 23, n 	 6 vs. WA, 354 � 36 mg/dl, n 	
13; P � 0.01) and was maintained throughout the study
period of �7 months (LA, 369 � 38, n 	 6 vs. WA, 273 �
24 mg/dl, n 	 13; P � 0.05, Fig. 1D). The LA females had
significantly high fasting plasma triglyceride levels at both
3 months and 7 months of age (LA, 78 � 12 and 65 � 6,
WA, 51 � 3 and 45 � 3 mg/dl, n 	 6; P � 0.01, Fig. 1E). As
expected in a diabetic state, this increase in plasma
triglyceride level was mainly due to increase in the VLDLs
(supplementary Fig. 1B). Diabetes, with its low levels of
functional insulin, is the most common pathological cause
of elevated ketone bodies (23). Consistently, LA females
had significantly higher levels of 3-hydroxybutyrate com-
pared with WA mice after 4 h of fasting (LA, 395 � 63, n 	
8, and WA, 222 � 37 �mol/l, n 	 7; P � 0.05, Fig. 1F).

We next performed an oral glucose tolerance test,
where LA females had significantly higher plasma glucose
levels at various time points up to 2 h after administration
of glucose load (Fig. 2A). Fifteen min after glucose chal-
lenge, the LA female mice had significantly lower plasma
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insulin levels compared with WA mice (LA, 0.36 � 0.01,
n 	 4, and WA, 0.49 � 0.03 ng/ml, n 	 6; P 	 0.01, Fig. 2B).
This lower glucose-stimulated insulin level in LA mice was
accompanied by significantly smaller mean pancreatic
islet area when compared with age-matched WA controls
(Fig. 2C and supplementary Fig. 1C and D). Thus, the
Pparg-P465L mutation worsens the hyperglycemia caused
by Ins2-Akita mutation partly by inadequate secretion of
glucose-stimulated insulin.

Adipose tissue dysfunction contributes to insulin
resistance in the LA females. We next investigated
whether insulin resistance contributes to higher plasma
glucose levels in female LA mice, using an IPITT. Insulin-
mediated suppression of plasma glucose was impaired in
LA females. Plasma glucose in WA females dropped to
70 � 6% compared with baseline at 15 min after an
intraperitoneal insulin injection. However, in LA females,
the glucose levels reduced only to 94 � 4% (n 	 6, P �
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FIG. 1. Increased hyperglycemia in Ins2Akita/� mice carrying the PPAR�P465L/� mutation. A: Reduced survival in male LA (n � 12, solid line) mice
compared with WA (n � 12, dashed line) littermates. B: Fasting plasma glucose in 6-week-old male LA mice (n � 10, black bars) compared with
male WA littermates (n � 12, white bars). C: Fasting plasma ketone body (3-hydroxybutyrate) levels in 6-week-old male LA mice (n � 4)
compared with male WA littermates (n � 6). D and E: Fasting plasma glucose and triglyceride levels in female LA (black bars) and WA (white
bars) littermates at 3 and 7 months of age (n > 6). F: Fasting plasma ketone bodies in 3-month-old female LA (n � 6) and WA (n � 7) littermates.
*P < 0.05, ** P < 0.01. 3-HB, 3-hydroxybutyrate; NS, not significant; TG, triglyceride.
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0.01, Fig. 3A). In addition to glucose homeostasis, insulin
also suppresses NEFA release, largely from the adipose
tissue (24). NEFA levels in LA mice were significantly
higher than in WA controls 15 min after insulin injection
(LA, 0.65 � 0.04, n 	 5, and WA, 0.51 � 0.02 mEq/l, n 	 6;
P � 0.01, Fig. 3B). This suggests that LA mice were not
able to suppress the NEFA release as effectively as the WA
controls.

PPAR� is widely recognized as an important regulator
of adipose tissue differentiation. Mice carrying the
Pparg-P465L mutation have normal total adipose tissue
mass with altered fat distribution (12). Insulin is also
known to be an important player in adipose tissue

physiology. LA mice carrying mutations in both these
important genes have a significant reduction in their
total adipose tissue mass and have lower body weight
(Fig. 3C, F). They have reduced gonadal (visceral)
adipose tissue (similar to L� mice) but a slight reduc-
tion in inguinal (subcutaneous) adipose tissue (unlike
L� mice, which have a significantly higher inguinal fat
mass than W� mice) (supplementary Table 1). Thus,
simultaneous presence of Pparg-P465L and Ins2-Akita
mutations severely compromises the normal adipose
tissue development. Median size of individual adipo-
cytes from the inguinal depot was significantly larger in
the LA mice than those in the WA mice (supplementary
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FIG. 3. Insulin resistance in adipose tissue of LA female mice. A: Blunted fall in plasma glucose and (B) suppression of NEFA secretion in LA mice
(n � 5, solid line) compared with WA littermates (n � 6, dotted line) in response to intraperitoneally administered insulin 0.5 U/kg body weight.
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Fig. 2A, available in an online appendix), and an assess-
ment of gonadal adipocytes suggested a similar change.
Together, these data suggest that the adipose tissue in
LA mice is composed of fewer, slightly larger
adipocytes.

The LA mice also had significantly reduced plasma
levels of adiponectin (LA, 24.4 � 1.5, n 	 3 vs. WA, 42.5 �
6.2 �g/ml, n 	 3; P � 0.05, Fig. 3D) and leptin (LA, 0.8 �
0.1, n 	 8 vs. WA, 2.3 � 0.5 ng/ml, n 	 8; P � 0.05, Fig. 3E).
Adiponectin and leptin are primarily produced in adipose
tissue and are critical to maintain insulin sensitivity
(25,26). To understand whether reduced amount of adi-
pose tissue and impaired adipokine production extend to
impairment in insulin sensitivity, we studied primary adi-
pocytes and adipose tissue explants in vitro. When mature
adipocytes were isolated and treated with 100 nmol/l
insulin, LA adipocytes had much reduced insulin-stimu-
lated 2-deoxyglucose uptake compared with WA adipo-
cytes (LA, 11.92 � 1.4 nmol/l vs. WA, 22.11 � 3.23; P �
0.05, Fig. 3G). Similarly, glucose uptake in adipose tissue
explants from WA mice significantly increased upon insu-
lin stimulation. However, glucose uptake in LA explants
did not respond to insulin (LA, 5.3 � 0.5 vs. WA, 9.8 � 0.6
arbitrary units; P 	 0.0001, Fig. 3H). These data demon-
strate the insulin resistance phenotype in the LA adipose

tissue. In separate experiments, both W� and L� adipose
tissue explants had comparable increases in insulin-stim-
ulated glucose uptake, confirming their normal insulin
sensitivity (data not shown). Incubation with insulin in-
duced a twofold increase in phosphorylation of Akt in
primary adipocytes from inguinal and gonadal fat of WA
mice. In contrast, insulin-stimulated phosphorylation of
Akt was significantly blunted in both inguinal and gonadal
adipocytes and was not different from the unstimulated
cells from LA mice (Fig. 5A and B). The total amount of
Akt protein was comparable in the two genotypes. Thus,
LA female mice have smaller and less functional adipose
tissue, which contributes to the mild insulin-resistance
phenotype as observed by IPITT in these mice.
Increased gluconeogenesis contributes to fasting hy-
perglycemia in LA mice. LA livers revealed a 2.2-fold
reduced expression of glucokinase, a key glucose uptake
enzyme, compared with WA mice (P 	 0.06, Fig. 4A).
Analysis with two-way ANOVA suggests that effects of
both Pparg genotype (P � 0.05) and Ins2 genotype (P �
0.05) are significant and additively contributing to the
reduced glucokinase expression in LA mice. We observed
a twofold reduction in the gene expression of sterol
regulatory element binding protein (SREBP-1), which
binds to and increases the transcription of glucokinase
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gene (P � 0.05). However, there was a significant 1.5-fold
increase in the gene expression for phosphoenolpyruvate
carboxykinase (PEPCK) (P � 0.05), one of the important
regulators of gluconeogenesis. Consistent with the gene
expression profile, the uptake of 2-deoxyglucose was
significantly lower in primary hepatocytes isolated from
LA compared with WA females (WA, 4.29 � 0.7, and LA,
1.51 � 0.28 mg/g protein; P � 0.01, Fig. 4B).

We next performed a pyruvate tolerance test to assess
the rate of gluconeogenesis in WA and LA female mice. LA
mice indeed demonstrated a 2.3-fold greater increase in
plasma glucose levels compared with WA mice at 60 min
after an intraperitoneal injection of pyruvate (P � 0.05,
Fig. 4C). Thus, impairment in glucose uptake with in-
creased hepatic glucose production contributes to the
fasting hyperglycemia in LA females compared with WA
controls. Corroborating with the in vivo data, glucose

production from primary hepatocytes, isolated from LA
mice, increased significantly in the presence of pyruvate
(2.7-fold) compared with 1.3-fold in WA hepatocytes. This
increase was completely suppressed in the presence of
exogenous insulin in both genotypes (Fig. 4D). Further-
more, the Akt phosphorylation in hepatocytes from both
WA and LA mice was increased comparably after incuba-
tion with 100 nmol/l insulin for 10 min (Fig. 5C). Thus,
hepatocytes from LA mice are as sensitive to insulin as
those from WA cells. At 7 months of age, the LA female
mice also had a small yet significant increase in their liver
weight (LA 4.68 � 0.14, n 	 6, and WA 3.9 � 0.08%, n 	 12;
P � 0.05, Fig. 4E). This increase is partially explained by a
small increase in liver triglyceride content per gram of
protein (Fig. 4F). Because the liver weight and triglyceride
accumulation were not different in LA and WA female mice
at 3 months (supplementary Table 1), the increase in liver
weight appears to be an age-dependant phenomenon.
PpargP465L mutation does not affect glucose han-
dling and insulin sensitivity in the skeletal muscle.
The mRNA level of Glut-4, the major insulin-sensitive
glucose transporter in skeletal muscle, showed no change
in LA mice compared with WA mice. Expression levels of
AdipoR1, IR, and IRS-1, genes important for normal
insulin sensitivity, were also unchanged (Fig. 6A and
supplementary Tables 2 and 3, available in an online
appendix). Insulin resistance is usually associated with
increased intracellular accumulation of lipids (27); how-
ever, the skeletal muscle triglyceride levels were unaltered
by the presence of Pparg-P465L mutation (Fig. 6B).
Glycogen content was increased in mice with the Akita
mutation, but Pparg-P465L mutation had no effects (Fig.
6C). Taken together, these data indicate that glucose
handling and insulin sensitivity in skeletal muscle are
largely unaffected by Pparg-P465L mutation.

DISCUSSION

Glucose tolerance and insulin resistance are complex
phenomena affected by multiple signaling mechanisms in
varied organs. For an individual as a whole, the implica-
tions of being hyperglycemic and insulin resistant are
serious. In this study, we focused on a dominant negative
point mutation, Pparg-P465L, in the ligand-binding do-
main of PPAR� and established that this mutation can
worsen the hyperglycemia caused by the diabetogenic
Ins2-Akita mutation. The higher plasma glucose in female
LA mice compared with WA females can be accounted for
by adipose tissue-specific insulin resistance, reduced cir-
culating plasma insulin, and increased gluconeogenesis.
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FIG. 5. Insulin-induced Akt phosphorylation. Western blot for pAKT
(upper panels), total AKT (middle panels), and �-actin (lower panels)
in adipocytes isolated from inguinal fat (A), gonadal fat (B), and
hepatocytes (C). Cells were incubated with 100 nmol/l (�) or without
(�) insulin for 10 min. Antibodies used were phospho-Akt (Thr308)
(Cell Signaling no. 2,965), Akt (Cell Signaling no. 9,272), and �-actin
(Cell Signaling no. 5,125). (A high-quality color representation of this
figure is available in the online issue.)
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FIG. 6. Normal glucose handling in skeletal muscle. A: Gene expression of Glut4, AdipoR1, IR, and IRS-1 in female WA (white bars) and LA (black
bars) mice. Data are expressed as mean � SE relative to the mean level in wild-type animals set as 1.0. B: Triglyceride content per gram of protein
in skeletal muscle in female mice. C: Skeletal muscle glycogen storage per gram of protein in female mice.
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Pparg is expressed in pancreatic islets, where it has a
growth inhibitory role. Targeted elimination of Pparg in
�-cells led to bigger pancreatic islet mass without alter-
ations in glucose homeostasis (11). Unlike the wild-type
islets, Pparg-deficient islets lack the ability to expand in
response to high-fat diet (11). In contrast, mice carrying
the Pparg-P465L mutation also have bigger islets, partic-
ularly on a high-fat diet (12). Therefore, although the
Pparg-P465L mutation is unable to exert a normal growth
inhibitory action, it does not interfere with the expansion
of islets in response to high-fat feeding. In our current
study of mice with Ins2-Akita mutation, the LA females
had significantly smaller mean islet area compared with
the WA islets, which are enlarged. The LA females also had
reduced plasma insulin levels 15 min after an oral glucose
dose compared with the WA littermates. Although the
direct effect of the Pparg-P465L mutation cannot be
excluded, it is likely that the increased insulin demand
from the already stressed pancreas accelerates apoptosis
of �-cells initiated by the Ins2-Akita mutation and con-
tributes to the augmented hyperglycemia seen in LA mice.
Consistent with our observation, Evans-Mollina et al. in
2009 demonstrated the positive effects of PPAR� agonist
Pioglitazone on islet function in diabetic mice as measured
by higher random insulin levels and improved glucose-
stimulated insulin release (28). These improvements were
secondary to reduced endoplasmic reticulum stress and
improved expression profile of genes involved in glucose
sensing and �-cell differentiation.

Our studies have shown that LA mice have increased
fasting plasma glucose levels and an insulin-resistance
phenotype. In fasted states, liver is the main source of
plasma glucose where pyruvate, amino acids, and glycerol
are converted into glucose through gluconeogenesis. This
newly synthesized glucose is available as energy for tis-
sues, in particular the brain, which relies primarily on
carbohydrate metabolism (29). Twofold reductions in he-
patic GK expression in LA mice result in reduced glucose
uptake. The glucokinase promoter has a peroxisome pro-
liferator response element and is transcriptionally acti-
vated by PPAR� agonists (30). Hepatic GK expression is
reduced in diabetic animal models with insulin deficiency
(31), and insulin has been shown to be a major activator of
GK gene transcription (31,32) through the transcription
factor SREBP-1c (30). We in turn observed a significant
decrease in SREBP-1c expression in LA compared with
WA livers. Thus, reduced circulating insulin levels and
Pparg-P465L mutation have an additive effect to reduce
GK expression. In addition, the upregulation of PEPCK in
these mice suggests increased gluconeogenesis, which
could explain the higher fasting plasma glucose in LA
mice. A pyruvate tolerance test, where LA mice showed a
significantly larger increase in glucose after pyruvate
injection, as well as higher pyruvate-stimulated glucose
production in the isolated LA hepatocytes than WA hepa-
tocytes in culture, confirmed this possibility. Thus, the
reduced hepatocyte glucose uptake coupled with upregu-
lated gluconeogenesis contributes to higher plasma glu-
cose in LA compared with WA females. Increased hepatic
gluconeogenesis in LA females could possibly result from
a deficiency in circulating insulin and/or insulin resistance.
Our experiments showing that LA hepatocytes are able to
suppress glucose production from pyruvate in response to
exogenous insulin suggest that the increased hepatic glu-
coneogenesis observed in LA mice mainly results from a

deficiency in circulating insulin but not hepatic insulin
resistance.

The insulin-resistance phenotype observed in the LA
females primarily arises from the adipose tissue. PPAR�
and insulin are both widely recognized as essential genes
for adipose tissue differentiation and lipid deposition.
Thus, we observed that Pparg-P465L mutation on Ins2-
Akita background significantly reduced adipose tissue
mass and adipocytokine levels as measured by plasma
leptin and adiponectin. Reduced plasma adiponectin and
leptin could contribute to whole-body insulin resistance.
However, liver and skeletal muscle of LA mice were
equally insulin sensitive to those of WA mice, indicating
that the signaling downstream of these peptides are intact.
Possibly the extent of decrease in adiponectin and leptin is
not sufficient to alter the insulin sensitivity in liver and
muscles. However, the LA mice had adipocytes signifi-
cantly reduced in number but larger in size, which are
shown to be associated with reduced insulin sensitivity
(33), suggesting the inability of the adipose tissue to
recruit new preadipocytes. The higher plasma triglyceride,
and a slight increase in liver triglyceride content, observed
in LA females could also be a consequence of this impaired
storage function of the adipose tissue. Similar to our
observation, Gray et al. reported that leptin-deficient ob/ob
mice carrying the Pparg-P465L mutation had a significant
reduction in adipose tissue mass and are insulin resistant
(13). The authors attributed this to an inability of the
adipose tissue to expand in the face of increased availabil-
ity of energy. Our in vitro data using adipose tissue
explants and primary adipocytes suggest that LA adipose
tissues also have impaired insulin-stimulated glucose up-
take, further confirming their adipose tissue dysfunction.
Whereas our conclusions were derived using Akita muta-
tion as a source of insulin deficiency, rendering Pparg-
P465L mutant mice insulin deficient by other means such
as Streptozotocin treatment and/or treating our model
with various antidiabetic drugs may provide further insight
into the phenotype.

Although our study was focused on Ins2Akita/� females,
the same mechanisms must be responsible for the in-
creased severity of diabetes in LA males compared with
WA males. Diabetes induced by Ins2-Akita mutation af-
fects males more severely than females (34), and conse-
quently, only males are used as models of type 1 diabetes
in general. However, our study shows that Pparg-P465L
mutation significantly increases hyperglycemia in Akita
female and advocates the use of female Ins2Akita/� mice as
an excellent model to study diabetes, particularly in fe-
male-specific conditions including polycystic ovary syn-
drome and gestational diabetes. Our mice also provide a
model where reduced insulin and insulin resistance, sig-
natures of type 1 and type 2 diabetes, respectively, are
simultaneously present.

In conclusion, our study showed that Pparg-P465L
mutation worsens the hyperglycemia caused by diabeto-
genic Ins2-Akita mutation and has unmasked the insulin-
resistance phenotype in the adipose tissue of mice
carrying the Pparg-P465L mutation on Ins2-Akita back-
ground. A simultaneous reduction of PPAR� and insulin,
which are both critical in adipocyte differentiation, leads
to limited expansion of adipose tissues in these mice. The
primary storage defect in adipose tissue triggers hypertri-
glyceridemia. Adipose tissue insulin resistance also in-
creases pressure on an already stressed pancreas and
contributes to a further destruction of �-cells and reduc-

ENHANCED DIABETES IN PpargP465L/�Ins2Akita/� MICE
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tion in circulating plasma insulin. This, in turn, causes the
liver to upregulate gluconeogenesis, resulting in the en-
hanced hyperglycemia.
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