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OBJECTIVE—cAMP is a critical messenger for insulin and
glucagon secretion from pancreatic b- and a-cells, respectively.
Dispersed b-cells show cAMP oscillations, but the signaling ki-
netics in cells within intact islets of Langerhans is unknown.

RESEARCH DESIGN AND METHODS—The subplasma-
membrane cAMP concentration ([cAMP]pm) was recorded in a-
and b-cells in the mantle of intact mouse pancreatic islets using
total internal reflection microscopy and a fluorescent translocation
biosensor. Cell identification was based on the opposite effects
of adrenaline on cAMP in a- and b-cells.

RESULTS—In islets exposed to 3 mmol/L glucose, [cAMP]pm was
low and stable. Glucagon and glucagon-like peptide-1(7-36)-amide
(GLP-1) induced dose-dependent elevation of [cAMP]pm, often
with oscillations synchronized among b-cells. Whereas glucagon
also induced [cAMP]pm oscillations in most a-cells, ,20% of the
a-cells responded to GLP-1. Elevation of the glucose concentra-
tion to 11–30 mmol/L in the absence of hormones induced slow
[cAMP]pm oscillations in both a- and b-cells. These cAMP oscil-
lations were coordinated with those of the cytoplasmic Ca2+ con-
centration ([Ca2+]i) in the b-cells but not caused by the changes in
[Ca2+]i. The transmembrane adenylyl cyclase (AC) inhibitor 2959-
dideoxyadenosine suppressed the glucose- and hormone-induced
[cAMP]pm elevations, whereas the preferential inhibitors of solu-
ble AC, KH7, and 1,3,5(10)-estratrien-2,3,17-b-triol perturbed cell
metabolism and lacked effect, respectively.

CONCLUSIONS—Oscillatory [cAMP]pm signaling in secreta-
gogue-stimulated b-cells is maintained within intact islets and
depends on transmembrane AC activity. The discovery of glu-
cose- and glucagon-induced [cAMP]pm oscillations in a-cells indi-
cates the involvement of cAMP in the regulation of pulsatile
glucagon secretion. Diabetes 60:1535–1543, 2011

C
yclic AMP and Ca2+ are key messengers in the
regulation of insulin and glucagon secretion
from pancreatic b- and a-cells, respectively, by
nutrients, hormones, and neural factors. Glucose

stimulation of insulin secretion involves uptake and me-
tabolism of the sugar in the b-cells, closure of ATP-sensitive
K+ channels, and depolarization-induced Ca2+ entry gener-
ating oscillations of the cytoplasmic Ca2+ concentration
([Ca2+]i) that trigger periodic exocytosis of secretory gran-
ules (1,2). This process is amplified by mechanism(s)
acting distal to the elevation of Ca2+ (3). cAMP promotes
exocytosis by facilitating the generation of Ca2+ signals
(4,5), by sensitizing the secretory machinery to Ca2+ (4,6),

and by stimulating mobilization and priming of granules via
protein kinase A– and Epac-dependent pathways (7,8).

Measurements of the cAMP concentration beneath the
plasma membrane ([cAMP]pm) in individual INS-1 b-cells
showed that glucagon-like peptide-1(7-36)-amide (GLP-1)
induces [cAMP]pm elevation, often manifested as oscillations
(9). Glucose has been regarded to only modestly raise islet
cAMP, supposedly by amplifying the effect of glucagon (10),
but single-cell cAMP recordings have recently shown that
glucose alone induces marked elevation of cAMP in MIN6
b-cells (11,12) and primary mouse b-cells (12,13). Although
one study reported that the glucose-induced cAMP response
depends on elevation of [Ca2+]i (11), other studies show only
partial or no Ca2+-dependence of the cAMP signal (12,13).
Like hormone stimulation, glucose induces oscillations of
[cAMP]pm, and coordination of the [cAMP]pm and [Ca2+]i
elevations generates pulsatile insulin release (12,14).

There are 10 isoforms of cAMP-generating adenylyl
cyclases (ACs) with different regulatory properties, nine of
which are transmembrane (tm) proteins stimulated by Gas
and the plant diterpene forskolin. Such tmACs mediate the
cAMP-elevating action of glucagon and incretin hormones
(15). b-cells express multiple tmACs (16), and the Ca2+-
stimulated AC8 has been proposed to be particularly
important for integrating hormone- and depolarization-
evoked signals (17). Soluble AC (sAC) is the only isoform
that lacks transmembrane domains. It is insensitive to
forskolin and G-proteins but stimulated by bicarbonate (18)
and Ca2+ (19). Although sAC was first found in the testis,
it also seems to be expressed in other tissues and was re-
cently proposed to be involved in glucose-induced cAMP
production in insulin-secreting cells (20).

Like insulin secretion, exocytosis of glucagon from the
a-cells is triggered by an increase of [Ca2+]i (21). Glucagon
release is stimulated by absence of glucose and is maxi-
mally inhibited when the sugar concentration approaches
the threshold for stimulation of insulin secretion (22).
Under hypoglycemic conditions, glucagon secretion is also
stimulated by adrenaline, which raises [Ca2+]i and [cAMP]pm
via a1- and b-adrenergic mechanisms (23,24). There are
fundamentally different ideas about the mechanisms un-
derlying glucose inhibition of glucagon secretion, including
paracrine influences from b- and d-cells (25–29) and direct
actions of glucose on the a-cells, resulting in depolarization-
(30) or hyperpolarization-mediated (22) inhibition of exo-
cytosis. Apart from the inhibitory effect of glucose, we
observed that very high glucose concentrations unexpectedly
stimulate glucagon secretion (31). The stimulatory compo-
nent may be important under physiological conditions be-
cause the hormone is released in pulses from rat (32) and
human (33) islets. Glucose thus causes alternating periods of
stimulation and inhibition resulting in time-average reduction
of glucagon secretion. Ca2+ is probably not the only mes-
senger in glucose-regulated glucagon release (29). Like for
insulin secretion, cAMP is believed to promote glucagon
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release by enhancing intracellular Ca2+ mobilization, Ca2+

influx through the plasma membrane, and mobilization of
secretory granules (23,24,34,35). However, it has also been
suggested that cAMP-mediated reduction of N-type Ca2+

currents can explain the inhibitory effect of GLP-1 on
glucagon secretion (36).

Until now, nothing was known about cAMP kinetics in
a-cells and all information on primary b-cells was based on
studies of dispersed islet cells. However, as a result of gap
junctional coupling and paracrine influences, the electro-
physiological characteristics and [Ca2+]i signaling in intact
islets differ considerably from those in dispersed b-cells
(2). Therefore, the aim of the current study was to clarify
how glucose, glucagon, and GLP-1 affect cAMP signaling in
a- and b-cells within intact islets of Langerhans.

RESEARCH DESIGN AND METHODS

Adrenaline, glucagon, GLP-1, 2959-dideoxyadenosine (DDA), EGTA, poly-L-
lysine, 3-isobutylmethylxanthine (IBMX), somatostatin, and HEPES were from
Sigma. Catechol estrogen (CE) [1,3,5(10)-estratrien-2,3,17-b-triol] for AC in-
hibition and the inactive control compound 1,3,5(10)-estratrien-3,17-b-triol
were from Makaira Limited (London, U.K.). KH7 was a gift from Drs. J. Buck
and L. Levin, Weill Medical College of Cornell University, New York, NY. The
acetoxymethyl esters of the Ca2+ indicators Fura-PE3 and Fura Red were
obtained from TEFLabs (Austin, TX) and Invitrogen, respectively. Adenovi-
ruses expressing a fluorescent cAMP biosensor have previously been de-
scribed (12).
Islet isolation, cell culture, and virus infection. Islets of Langerhans were
isolated from C57BL6J mice as previously described (22). The Uppsala ethics
committee approved all animal experimental procedures. When the pancreas
was excised, the lower duodenal part was omitted to reduce contribution of
islets with cells producing pancreatic polypeptide (37). After isolation, the
islets were cultured for 1–4 days in RPMI-1640 medium containing 5.5 mmol/L
glucose, 10% fetal calf serum, 100 mg/mL penicillin, and 100 mg/mL strepto-
mycin at 37°C in an atmosphere of 5% CO2 in humidified air. Some experi-
ments were performed on single cells prepared by shaking the freshly isolated
islets in a Ca2+-deficient medium followed by attachment to coverslips during
2–5 days of culture. If not otherwise stated, data were obtained with cells from
at least three independent islet isolations. Where indicated, experiments were
performed on insulin-secreting MIN6 b-cells cultured as previously described
(12). For [cAMP]pm measurements, the islets or cells were infected with cAMP
biosensor-encoding adenoviruses using 105 fluorescence forming units (FFU)/
islet or 60 FFU/cell as previously described (12). It was verified that the virus
infection did not affect the islet [Ca2+]i response to glucose stimulation.
Measurements of [Ca

2+
]i and [cAMP]pm. The islets or cells were transferred

to a buffer containing (in mmol/L) 125 NaCl, 4.8 KCl, 1.3 CaCl2, 1.2 MgCl2,
3 glucose, and 25 HEPES (pH adjusted to 7.40 with NaOH) and incubated for
30 min at 37°C. In some experiments, this medium was supplemented with
20 mmol/L NaHCO3 after equimolar reduction of NaCl. For Ca2+ recordings,
the cells were preincubated in the presence of 1 mmol/L of the acetoxymethyl
ester of Fura-PE3 and islets with 10 mmol/L of the acetoxymethyl ester of Fura
Red, respectively. Immediately after preincubation, the islets were applied
onto a poly-L-lysine–coated 25-mm coverslip and allowed to attach. [Ca2+]i
imaging with Fura-PE3 was performed at 37°C with an epifluorescence mi-
croscope setup as previously described (5). Measurements of the cytoplasmic
Ca2+ concentration beneath the plasma membrane ([Ca2+]pm) were made with
Fura Red in a total internal reflection fluorescence (TIRF) setup consisting of
an Eclipse Ti microscope with a 603 1.45 NA-objective (Nikon), using 488 nm
excitation with fluorescence detection at .630 nm. Using the same TIRF
system, [cAMP]pm was measured in intact islets or cells expressing the cAMP
translocation biosensor as previously described (12). Image pairs were ac-
quired every 5 s using a back-illuminated EMCCD camera (DU-887; Andor
Technology, Belfast, Northern Ireland) controlled by MetaFluor software (Mo-
lecular Devices, Downingtown, PA). The cAMP concentration was expressed as
the background-corrected cyan fluorescent protein–to–yellow fluorescent pro-
tein (CFP-to-YFP) ratio. The basal ratio was normalized to unity for compen-
sation for the variability in expression levels.
Immunostaining. Individual cells in the experimental chamber were identified
by immunostaining for insulin or glucagon. Following the fluorescence
recordings, the cells were rinsed with 25, 50, and 75% ethanol and eventually
fixed in 95% ethanol for 5 min. After sequential rinsing with 3% H2O2 and Tris
buffer (0.05 mol/L, pH 7.4), serum-free protein block (DAKO) was added to
reduce background staining. Polyclonal rabbit anti-glucagon or guinea pig
anti-insulin (1:100; DAKO) was added after 10 min and allowed to incubate for

30 min. After rinsing with Tris buffer, the MACH 3 rabbit probe alkaline
phosphatase polymer kit (Biocare Medical, Concord, CA) was used for visu-
alization according to the manufacturer’s instructions. The reaction was
stopped by addition of Tris buffer. After rinsing with distilled water, cell nuclei
were stained with hematoxylin (Histolab) for 0.5–2 min.
Glucose oxidation. Triplicate vials, each containing 104 MIN6 b-cells and
Krebs-Ringer bicarbonate–HEPES buffer (100 mL) supplemented with 3.3
mmol/L (94 GBq/mol) or 11.1 mmol/L (28 GBq/mol) D-[U-14C]glucose, were
incubated with or without test compounds for 90 min at 37°C under an at-
mosphere of 95/5% O2/CO2 during slow shaking. Metabolism was then stopped
by addition of 17 mmol/L antimycin A (Sigma-Aldrich) in ethanol. The gener-
ated 14CO2 was trapped in 250 mL hyamine 103 (Perkin-Elmer) during in-
cubation at 37°C for 2 h as previously described (38). Radioactivity was
measured in a liquid scintillation counter after addition of 5 mL Ultima Gold
scintillation fluid (Perkin-Elmer).
Image and statistical analysis. Image analysis was made using the MetaFluor
or ImageJ (W.S. Rasband, National Institutes of Health, http://rsb.info.nih.gov/
ij) software. [cAMP]pm and [Ca2+]i response magnitudes were calculated from
time-average data obtained before and during the stimulation period. Data are
presented as means 6 SEM. Statistical comparisons were assessed with Stu-
dent t test.

RESULTS

Adrenaline has opposite effects on [cAMP]pm in a-
and b-cells. Figure 1A illustrates TIRF measurements on
peripheral mouse islet cells expressing the cAMP biosensor,
and Fig. 1B shows TIRF images of the fluorescence-labeled
subunits of the cAMP indicator. The CFP-to-YFP ratio was
usually stable in peripheral islet cells exposed to 3 mmol/L
glucose (Fig. 1C). Cell size and adrenaline responses have
previously been used to discriminate between a- and b-cells
because only the relatively small a-cells expressing a1- and
b-adrenoceptors (24) respond with intracellular mobiliza-
tion of Ca2+ (39). Because the b-adrenoceptors mediate
cAMP elevation in a-cells and the larger b-cells express
cAMP-lowering a2-adrenoceptors (40), we tested whether

FIG. 1. TIRF imaging of intact pancreatic islets shows that adrenaline
induces differential effects on [cAMP]pm in a- and b-cells. A: Principle
for TIRF imaging of an intact pancreatic islet attached to a coverslip.
Reflection of the laser excitation light at the coverglass-medium in-
terface generates an evanescent field within an ;100 nm zone above
the interface, which will excite fluorescent molecules near the plasma
membrane of the various islet cells that adhere to the coverslip. B: TIRF
microscopy images of a mouse pancreatic islet expressing the cAMP
translocation biosensor composed of a PKA catalytic Ca subunit fused
to YFP (Ca-YFP) and a truncated PKA regulatory RIIb subunit fused to
a membrane-anchored CFP (RIIb-CFP-CAAX). C: TIRF microscopy
recordings of [cAMP]pm in isolated immunoidentified a- and b-cells
exposed to 3 mmol/L glucose and 5 mmol/L adrenaline. Adrenaline
increases [cAMP]pm in the a-cell but does not affect basal [cAMP]pm in
the b-cell. D: Immunostaining of dispersed islet cells showing that
a small cell responding to adrenaline with [cAMP]pm elevation in panel
C is a glucagon-positive a-cell. Scale bars, 10 mm. (A high-quality digital
representation of this figure is available in the online issue.)
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the cAMP response to adrenaline could be used for cell
identification. This was indeed the case, and all of 25 cells
with small TIRF footprints that responded to adrenaline
with [cAMP]pm elevation stained positively for glucagon.
In contrast, all of 30 cells with large footprint and nega-
tive adrenaline response were insulin positive. Figure 1C
and D shows that an immune-identified a-cell responded to
adrenaline with elevation of [cAMP]pm, whereas a b-cell
(immunostaining not shown) did not respond under these
conditions with basal [cAMP]pm levels. The [cAMP]pm-
lowering effect of adrenaline on b-cells became apparent
under conditions where the levels of cAMP were elevated
(Fig. 2A and D).
Glucagon and GLP-1 trigger oscillations of [cAMP]pm
in pancreatic islet cells. When mouse islets were ex-
posed to glucagon in the presence of 3 mmol/L glucose,
there was a prompt increase in [cAMP]pm with sustained
elevation or oscillations in b-cells (36 of 41 [Fig. 2A]) and
a-cells (5 of 8 [Fig. 2C]). In b-cells, the integrated response
was half-maximal and maximal at 80 and 1,000 nmol/L
glucagon, respectively (Fig. 2B). Somatostatin suppressed
the glucagon-induced [cAMP]pm elevation in both b-cells
(Fig. 2D) and a-cells (data not shown). Similar responses
were seen with the a2-adrenoceptor agonist clonidine,
which lowered [cAMP]pm in all of 11 b-cells (Fig. 2E) and 6
of 8 a-cells (Fig. 2F), indicating that both cell types express
a2-receptors. However, adrenaline still caused elevation
of [cAMP]pm in the a-cells, consistent with domination of
b-adrenoceptors in this cell type (40). At concentrations
of 0.5–10 nmol/L, GLP-1 induced [cAMP]pm oscillations

in b-cells (Fig. 3A and D). The oscillatory pattern varied
between different cells with frequencies ranging from 0.18 to
2.1 min21 and amplitudes from 0.06 to 1.5 normalized ratio
units. The amplitude and duration of individual oscillations
tended to increase with GLP-1 concentration, as illustrated
in Fig. 3A. High concentrations of GLP-1 (.50 nmol/L)
induced prompt and sustained [cAMP]pm elevation in
b-cells (19 of 23) that rapidly reversed upon omission of
the peptide (Fig. 3B). Figure 3C shows the concentration
dependence of the integrated [cAMP]pm response to GLP-1,
with half-maximal and maximal effects at 30 and 300 nmol/L,
respectively. The [cAMP]pm oscillations induced by GLP-1
were strikingly well synchronized among b-cells in the islet
even between those lacking direct contact (Fig. 3D). Only
occasional a-cells responded to GLP-1 with elevation of
[cAMP]pm (5 of 48), and Fig. 3E shows a graded response
to 5–50 nmol/L GLP-1 in one of these a-cells identified
with adrenaline. To investigate whether the lack of re-
sponse in many a-cells was because cAMP did not increase
above the detection threshold, we exposed the cells to
5 mmol/L IBMX, which is at the border to give a detectable
increase of [cAMP]pm. Of 21 adrenaline-identified a-cells,
10 responded to 5 mmol/L IBMX. Only two of those plus
two of the IBMX-unresponsive a-cells reacted to 100 nmol/L
GLP-1, and the [cAMP]pm increase was of a magnitude
similar to that induced by adrenaline (Fig. 3F).
Glucose triggers oscillations of [cAMP]pm in mouse
islet b-cells. When the glucose concentration was ele-
vated from 3 to 11, 20, or 30 mmol/L, most islet b-cells
responded with a pronounced rise of [cAMP]pm followed

FIG. 2. Glucagon triggers [cAMP]pm oscillations in islet a- and b-cells. TIRF microscopy recordings of [cAMP]pm in individual cells within an intact
mouse pancreatic islet exposed to 3 mmol/L glucose. A: Oscillations of [cAMP]pm induced by 10 nmol/L glucagon in a b-cell identified by the
[cAMP]pm-lowering effect of adrenaline (adr). B: Concentration-dependence of the glucagon-induced time-average [cAMP]pm elevation in islet
b-cells. Means 6 SEM for 3–12 cells at each concentration. C: [cAMP]pm oscillations induced by 10 nmol/L glucagon in an islet a-cell identified by
the [cAMP]pm-elevating effect of adrenaline. D: Suppression of glucagon-induced [cAMP]pm elevation in an adrenaline-identified b-cell exposed to
100 nmol/L somatostatin (sst). E and F: Effect of 0.1 mmol/L clonidine on [cAMP]pm elevation induced by 50 nmol/L glucagon in a b-cell (E) and
a-cell (F) identified by their responses to adrenaline.
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by a stable plateau (16 of 41) or slow oscillations with
frequencies in the 0.05–0.4/min range and amplitudes of
0.05–0.6 ratio units (21 of 41) (Fig. 4A and B). The
remaining cells showed a single [cAMP]pm peak followed
by return to the baseline (not shown). As previously de-
scribed in isolated b-cells (12), the glucose-induced ele-
vation of [cAMP]pm was preceded by a small reduction in
many cells. This phenomenon is illustrated in Fig. 4C.
Figure 4A–D also shows that adrenaline abolished the
glucose-induced elevation of [cAMP]pm. Like the GLP-1–
triggered oscillations of [cAMP]pm, those induced by glucose

were often synchronized among b-cells within an islet
(Fig. 4D). The glucose and hormone effects were additive,
and the [cAMP]pm elevation induced by a combination of
20 mmol/L glucose and 10 nmol/L glucagon or 100 nmol/L
GLP-1 was larger than the effect of either stimulus
alone (Fig. 4E and F).
Ca

2+
is not essential for glucose-induced [cAMP]pm

oscillations. The amplitudes of the [cAMP]pm oscillations
were significantly suppressed, but the oscillations often
persisted after removal of Ca2+ and addition of 2 mmol/L
EGTA to prevent changes in [Ca2+]i (4 of 6 cells) (Fig. 5A).

FIG. 3. GLP-1 triggers [cAMP]pm oscillations that are synchronized between islet b-cells. TIRF microscopy recordings of [cAMP]pm in individual
cells within an intact mouse pancreatic islet exposed to 3 mmol/L glucose. A: [cAMP]pm oscillations in a b-cell exposed to increasing concentrations
of GLP-1 (the trace was interrupted between changes in GLP-1 concentration). The amplitude and duration of individual oscillations tended to
increase with the GLP-1 concentration. B: Stable and reversible [cAMP]pm elevation in response to 100 nmol/L GLP-1 in a b-cell identified by the
lack of adrenaline (adr) effect. C: Dose dependence of the GLP-1 induced time-average [cAMP]pm elevation in islet b-cells. Means 6 SEM for 4–9
cells at each concentration. D: [cAMP]pm oscillations induced by 1 nmol/L GLP-1 are synchronized between b-cells lacking apparent direct contact.
The recordings are from the two cells in the TIRF image encircled with broken lines. Scale bar, 10 mm. E: Example of a rare a-cell with dose-
dependent [cAMP]pm elevations in response to GLP-1. F: GLP-1 response in an adrenaline-identified a-cell exposed to 5 mmol/L IBMX. (A high-
quality digital representation of this figure is available in the online issue.)
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The [Ca2+]i response of intact islets differs from that of
isolated cells in displaying a pattern of rapid (2–4/min) reg-
ular oscillations that depends not only on Ca2+ influx but also
on release from intracellular stores (2). Corresponding
rapid oscillations of [cAMP]pm were never observed, even
after elevating the extracellular Ca2+ concentration from
1.3 to 2.6 mmol/L (data not shown), which typically pro-
motes the appearance of the fast Ca2+ pattern. Simulta-
neous measurements of [cAMP]pm and [Ca2+]pm in islet
b-cells loaded with the fluorescent indicator Fura Red
demonstrated that [cAMP]pm and [Ca2+]pm elevations were
synchronized (Fig. 5B), but the temporal relationship of the
initial glucose-induced [cAMP]pm and [Ca2+]pm elevations
varied with [cAMP]pm, sometimes increasing before (Fig. 5C)
and sometimes after (Fig. 5B) [Ca2+]pm. Together, these
findings indicate that Ca2+ amplifies the [cAMP]pm re-
sponse but that [Ca2+]i oscillations are not essential for
glucose-induced oscillations of [cAMP]pm.
Transmembrane ACs mediate cAMP formation in
MIN6 and islet b-cells. In both b-cells within islets
(n = 4) (Fig. 6A) and MIN6 b-cells (n = 37) (Fig. 6B), the
glucose-induced [cAMP]pm oscillations were completely
inhibited by 30 mmol/L KH7, which has been described as
a specific sAC inhibitor (41). Similar inhibition was
obtained with 100 mmol/L of the tmAC inhibitor DDA in
clonal (Fig. 6B) and primary (n = 5) (Fig. 6C) b-cells. Also,
the [cAMP]pm elevation stimulated by 50 nmol/L GLP-1 was
inhibited by both DDA and KH7 (n = 12) (Fig. 6D). How-
ever, whereas DDA was without effect on glucose-induced
[Ca2+]i oscillations, KH7 completely abolished this response
(n = 8) (Fig. 6E), indicating that the compound might

interfere with upstream effects in glucose stimulus-secretion
coupling. Indeed, KH7 (30 mmol/L) markedly suppressed
glucose oxidation in MIN6 cells. This effect could not be
attributed to lowering of cAMP because the effect was not
reversed by addition of 10 mmol/L of the membrane-
permeable analog 8-Br-cAMP. In contrast, a slight tendency
of DDA to inhibit glucose oxidation was completely re-
versed by 8-Br-cAMP (Fig. 6F).

CE is an alternative inhibitor of sAC (42), and this
compound was without effect on glucose-induced [Ca2+]i
oscillations (Fig. 6E). In 60% of the MIN6 b-cells, CE
caused temporary interruption of the [cAMP]pm oscil-
lations, but after a few minutes, there were [cAMP]pm
oscillations indistinguishable from those under con-
trol conditions (Fig. 6G). The interruption probably
was not mediated by changes in cAMP, given that it
was observed also with the inactive control compound
1,3,5(10)-estratrien-3,17-b-triol (data not shown). Similar
results were obtained when the experiments were per-
formed in medium containing 20 mmol/L NaHCO3, which
promotes sAC activity (Fig. 6H).
Glucose-induced [cAMP]pm oscillations in a-cells. In
the presence of 3–7 mmol/L glucose, [cAMP]pm was low
and stable in a-cells identified by the adrenaline-induced
[cAMP]pm elevation. However, like in b-cells, 11–30 mmol/L
glucose triggered [cAMP]pm oscillations in many a-cells
(3 of 11 at 11 mmol/L, 13 of 28 at 20 mmol/L, and 8 of 17 at
30 mmol/L glucose) (Fig. 7A). In some a-cells, the nadirs
and peaks of the oscillations reflected inhibition and
stimulation, respectively, in relation to the baseline (Fig. 7B).
In the few islets that permitted analysis of the phase

FIG. 4. Glucose induces [cAMP]pm oscillations in islet b-cells. TIRF microscopy recordings of [cAMP]pm in individual cells within an intact mouse
pancreatic islet. A and B: Stable elevation (A) and oscillations (B) of [cAMP]pm in response to a step increase of the glucose concentration from 3
to 11 or 20 mmol/L in b-cells identified by the [cAMP]pm-lowering effect of adrenaline (adr). C: [cAMP]pm recording showing that the initial glucose-
induced [cAMP]pm elevation in b-cells is preceded by a slight lowering. D: Synchronization of the glucose-induced [cAMP]pm oscillations in two islet
b-cells lacking apparent direct contact. E: Additive effect of 10 nmol/L glucagon and 20 mmol/L glucose (20 G) on [cAMP]pm in an islet b-cell.
F: Means 6 SEM for the average increases of [cAMP]pm induced by 20 mmol/L glucose alone and in combination with 10 nmol/L glucagon or
100 nmol/L GLP-1.
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relationship of [cAMP]pm oscillations between different
a-cells (n = 1) and between a-cells and b-cells (n = 4),
there was no apparent synchronization of the oscillations
(Fig. 7C and D).

DISCUSSION

The current study uses a TIRF microscopy approach to
investigate cAMP signaling in intact pancreatic islets. The
method images the plasma membrane and submembrane
cytoplasm of the different types of cells in the islet mantle
in direct contact with the coverslip. Although innervation
and normal microcirculation is lacking, the preparation
allows analysis of cAMP signaling in cells able to interact
within the micro-organ. Unfortunately, immunostaining
could not be used to identify particular cells within an islet
after the TIRF recording because the islets already detach
from the coverslip during attempted fixation. Free islet
cells attach more firmly, and it became apparent that
immune-identified a- and b-cells displayed distinct [cAMP]pm
responses to adrenaline, reflecting differences in adreno-
ceptor expression (40), and these responses were used for
identification of the two cell types in the islet. Islets were
isolated only from the parts of the pancreas where PP-cells

are scarce (37), and it seems unlikely that d-cells responding
to adrenergic receptor activation with lowering of [cAMP]pm
incorrectly have been taken for b-cells. The d-cells are
much less abundant and smaller than the b-cells. Small cells
and cells with small footprints were not taken as b-cells
irrespective of response.

As expected, glucagon and GLP-1 evoked cAMP signaling
in the islets. However, whereas GLP-1 triggered [cAMP]pm
oscillations in most b-cells, only occasional a-cells responded
to the hormone with elevation of [cAMP]pm. It has been
controversial whether GLP-1 receptors are present in a-cells.
Some studies of rat a-cells have failed to demonstrate GLP-1
receptor expression (43,44) while others have shown that
GLP-1 increases the cAMP content (35) and exocytosis
(35,45). The present data from mouse a-cells is in line with
observations that GLP-1 receptors are expressed only in
a small subpopulation of rat (44) and mouse (36) a-cells. It
is well accepted that GLP-1 is an inhibitor of glucagon se-
cretion, but the underlying signaling is unclear. It was re-
cently suggested that very small cAMP elevations inhibit
glucagon secretion by a protein kinase A (PKA)-dependent
mechanism (36). However, from the present data, GLP-1
inhibition of glucagon secretion seems to involve mecha-
nisms other than changes of [cAMP]pm.

Glucagon elicited [cAMP]pm oscillations in most a- and
b-cells. Given that cAMP is a positive modulator of glu-
cagon secretion (23,24,34,35), our observations support
a positive autocrine feedback effect of the hormone. The
reason for the absence of [cAMP]pm oscillations in low
glucose when glucagon secretion is stimulated is currently
unknown. In islet b-cells, the cAMP responses to glucagon
and GLP-1 were significantly enhanced by high glucose, as
expected from earlier biochemical studies (17). Glucose
alone also induced pronounced changes in [cAMP]pm,
reminiscent of those of [Ca2+]i, with an initial lowering
followed by a prominent rise. This rise may reflect both
direct effects of glucose on the b-cell and an early peak of
glucagon secretion within the islet (32,33). The period of
the subsequent oscillations was usually several minutes,
as in isolated cells (12), and faster oscillations typical for
islet recordings of membrane potential and [Ca2+]i were not
observed. Because Ca2+ is known to increase islet cAMP via
Ca2+/calmodulin-sensitive ACs (17), it seems possible that
the changes of [cAMP]pm are driven by those of [Ca2+]i (46).
However, like in isolated b-cells (12), [cAMP]pm oscillations
in intact islets often persisted when glucose-stimulated Ca2+

entry was prevented, and the cAMP signal sometimes
preceded that of Ca2+ during the initial glucose-induced
response. Comparable findings were reported using
transgenic mouse islets expressing another cAMP sensor,
with glucose-induced stable cAMP elevation preceding
the increase of [Ca2+]i and persisting in the absence of
extracellular Ca2+ (13). There are mutual interactions
between cAMP and Ca2+, and both signals depend on
intracellular ATP (12). ATP concentrations are in turn
affected by Ca2+, and interestingly, oscillations in b-cell
metabolism (47) show a Ca2+ dependence reminiscent of
that of the presently observed cAMP oscillations. In light
of these interactions, it is not surprising that there are
slight variations in timing between the Ca2+ and cAMP
signals.

Because the tmACs expressed in islets have in vitro Km
values for ATP in the submillimolar range (48), it is not
clear how they would be regulated by the approximately
10-fold higher concentrations of ATP in the cytoplasm. We
now considered the possibility that glucose stimulates

FIG. 5. Glucose-induced [cAMP]pm oscillations in islet b-cells are not
strictly dependent on Ca

2+
. A: TIRF microscopy recording from a mouse

islet b-cell showing that glucose-induced [cAMP]pm oscillations persist
in Ca

2+
-deficient medium containing 2 mmol/L EGTA. B and C: Simul-

taneous recordings of [cAMP]pm (black trace) and [Ca
2+
]pm (gray trace)

in islet b-cells following a step increase of the glucose concentration
from 3 to 20 mmol/L. Cells typically exhibited coordinated oscillations
of the two messengers (B). [Ca2+]pm sometimes increased before (B)
and sometimes after (C) [cAMP]pm. Islets expressing a modified cAMP
sensor based on Ca-CFP translocation and nonfluorescent RIIb-CAAX
were loaded with the Ca

2+
indicator Fura Red. The fluorescence traces

have been inverted to show increase of [cAMP]pm and [Ca
2+
]pm as up-

ward deflections.
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cAMP formation via sAC, which is regulated by bicarbonate,
Ca2+, and millimolar concentrations of ATP (18,19,49) and
which was recently proposed to be present in insulin-
secreting cells (20). However, the small molecule in-
hibitor KH7 that is often used to define sAC activity
(20,41) showed deleterious effects on b-cell metabolism,
limiting its usefulness for studies of sAC in intact cells.
The less selective sAC inhibitor CE failed to provide evi-
dence that sAC mediates glucose-induced cAMP formation
in the subplasma membrane space of insulin-secreting cells.
Future studies will have to clarify which particular isoforms
of tmACs sense changes in b-cell metabolism and how the
additive effects of glucose and hormones on [cAMP]pm are
mediated. Interestingly, although glucose is an inhibitor of
glucagon secretion and cAMP stimulates exocytosis, glu-
cose also triggered cAMP oscillations in a-cells. However,
glucose-inhibited glucagon secretion is pulsatile, and the

reduced time-average secretion in both rat (32) and human
(33) islets is composed of alternating periods of inhibition
and stimulation. The present findings are consistent with
cAMP being involved in the stimulatory component, per-
haps also explaining how very high glucose concentrations
can paradoxically increase glucagon release (31).

Pulsatile hormone secretion from the intact islet obvi-
ously requires synchronization of the secretory activity
among the cells within the islet. Functional coupling was
indeed observed in GLP-1–stimulated b-cells, but the un-
derlying mechanism is unknown. However, gap junction–
mediated diffusional exchange and electrical coupling and
the stimulatory action of Ca2+ on cAMP formation are
factors favoring cAMP signal propagation and synchroni-
zation between cells within functional islet subdomains.
The synchronization was less striking during glucose
stimulation, possibly because paracrine influences become

FIG. 6. Glucose-induced [cAMP]pm formation in MIN6 and islet b-cells is mediated by transmembrane adenylyl cyclases. A–C: TIRF recordings from
mouse islet b-cells (A and C) and a MIN6 cell (B) showing inhibition of glucose-induced [cAMP]pm oscillations by 30 mmol/L KH7 (A and B) and 100
mmol/L DDA (B and C). D: TIRF recording from an islet b-cell showing that 100 mmol/L DDA and 30 mmol/L KH7 suppresses the [cAMP]pm response
to 50 nmol/L GLP-1. E: Epifluorescence recording of [Ca

2+
]i in a single mouse b-cell showing that oscillations triggered by 20 mmol/L glucose are

unaffected by 20 mmol/L of the catechol estrogen compound [1,3,5(10)-estratrien-2,3,17 b-triol] (CE) and 100 mmol/L DDA but suppressed by 30
mmol/L KH7. F: Glucose oxidation in MIN6 b-cells exposed to 3 or 11 mmol/L glucose in the absence or presence of 30 mmol/L KH7, 10 mmol/L 8-Br-
cAMP, and 100 mmol/L DDA. Means 6 SEM for five experiments. *P < 0.001 for difference between 3 and 11 mmol/L glucose. #P < 0.001 for
difference from 11 mmol/L glucose. G: TIRF recording from a single MIN6 b-cell showing the effect of 20 mmol/L CE on [cAMP]pm oscillations
induced by 11 mmol/L glucose. H: TIRF recording of glucose-induced [cAMP]pm oscillations in a single MIN6 b-cell maintained in HCO3

2
-buffered

medium and exposed to 20 mmol/L CE and 100 mmol/L DDA.
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perturbed by insufficient exchange of superfusion medium
around the islet cells adhering to the coverslip. Not only do
glucose and glucagon independently evoke [cAMP]pm
oscillations in a- and b-cells, but somatostatin, whose se-
cretion is stimulated by glucose and glucagon (50), sup-
presses cAMP levels in these cells. In summary, we found
that the cAMP signaling properties of isolated b-cells are
maintained when they are located within the intact pan-
creatic islet. Moreover, we discovered that glucose and
glucagon induce [cAMP]pm oscillations in a-cells. Clarifi-
cation of the temporal relationship of cAMP signaling in
a- and b-cells will help to explain the generation of anti-
synchronous pulses of insulin and glucagon underlying the
20- to 100-fold changes in insulin-to-glucagon ratio (33) that
determine glucose homeostasis in the liver.
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