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Over the past 20 years, a large body of experimental and
epidemiologic evidence has linked sleep duration and
quality to glucose homeostasis, although the mechanistic
pathways remain unclear. The aim of the current study was
to determine whether genetic variation influencing both
sleep and glucose regulation could underlie their functional
relationship. We hypothesized that the genetic regulation of
electroencephalographic (EEG) activity during non–rapid
eye movement sleep, a highly heritable trait with finger-
print reproducibility, is correlated with the genetic control
of metabolic traits including insulin sensitivity and b-cell
function. We tested our hypotheses through univariate
and bivariate heritability analyses in a three-generation
pedigree with in-depth phenotyping of both sleep EEG
and metabolic traits in 48 family members. Our analyses
accounted for age, sex, adiposity, and the use of psycho-
active medications. In univariate analyses, we found sig-
nificant heritability for measures of fasting insulin sensitivity
and b-cell function, for time spent in slow-wave sleep, and
for EEG spectral power in the delta, theta, and sigma
ranges. Bivariate heritability analyses provided the first
evidence for a shared genetic control of brain activity dur-
ing deep sleep and fasting insulin secretion rate.

Over the past 20 years, epidemiologic as well as laboratory
evidence has linked sleep duration and sleep quality to the
regulation of glucose homeostasis, although the mecha-
nisms mediating this relationship remain unclear. Longitu-
dinal epidemiologic studies have found an increased risk of
type 2 diabetes with insufficient sleep and poor sleep quality,
with an effect size similar to that of traditional risk factors

(1–3). Furthermore, laboratory studies in healthy volunteers
have consistently reported a decrease in insulin sensitivity
without adequate compensatory increase in b-cell response
after short-term experimental sleep restriction (1,4,5). Slow-
wave activity (SWA) in non–rapid eye movement (NREM)
sleep, also known as delta activity, is a marker of the depth
or intensity of NREM sleep that may be quantified by spec-
tral power of the electroencephalogram (EEG) in the low-
frequency range typical of slow waves (0.75 to 4.5 Hz) (6,7).
SWA is highly reproducible from night to night in a given
individual (8–10) and is highly heritable (11,12). Experi-
mental suppression of SWA, either by selective deprivation
of slow-wave sleep (SWS) or by sleep fragmentation across
all stages of sleep, has been shown to reduce insulin sensi-
tivity without significantly increasing insulin secretion (13,14).
Additionally, epidemiologic and clinical studies have dem-
onstrated that obstructive sleep apnea, a sleep disorder
characterized by poor sleep quality generally associated
with low levels of SWA (15–17), is a risk factor for insulin
resistance and type 2 diabetes, independent of BMI. Given
this body of evidence, we hypothesized that common ge-
netic pathways may be involved in the regulation of EEG
activity during sleep, especially during deep NREM sleep,
and in the regulation of glucose metabolism.

Type 2 diabetes, a multifactorial polygenic disease esti-
mated to affect nearly 400 million people worldwide (18), is
characterized by both reduced insulin sensitivity and inad-
equate compensatory insulin secretion by the pancreatic
b-cells (19). Several studies have documented the heritabil-
ity of parameters controlling glucose homeostasis (20–24),
suggesting that the current diabetes epidemic results from
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both environmental and genetic factors. Genome-wide as-
sociation studies have identified about 90 single nucleotide
polymorphisms that increase the risk of type 2 diabetes;
however, in keeping with a highly polygenic architecture,
these risk alleles explain only about 10% of the heritability
of type 2 diabetes (25). Recently, several genes involved in
the circadian control of sleep regulation, such as melato-
nin receptor 1b (MTNR1b) (26), period circadian clock 3
(PER3) (27), and cryptochrome circadian clock 2 (CRY2)
(28), have also been associated with increased diabetes risk,
suggesting pleiotropy between genetic pathways underlying
sleep regulation and glucose metabolism. Further, within the
past year, three large-scale genome-wide studies demon-
strated a genetic correlation between self-reported sleep
characteristics and risk for type 2 diabetes (29–31). In each
study, self-administered questionnaires were used to assess
subjective sleep duration, quality, and/or timing in large
samples (N .10,000). As demonstrated by the findings of
these studies, phenotypic assessments of sleep traits by self-
report are powerful because they facilitate the investigation
of very large samples required for the discovery of individ-
ual genetic variants with small effects. By the same token,
survey tools inherently lack phenotypic precision thereby
limiting the biologic insight of the research. In particular,
subjective assessments of sleep quality correlate minimally,
if at all, with objective EEG-based measurements. Quantita-
tive phenotypes, such as blood glucose or insulin levels in
response to a challenge or brain EEG activity during sleep
measured under controlled laboratory settings, are obviously
impracticable to collect on large samples. To overcome this
limitation, we used a large three-generation family to exam-
ine the joint heritability of quantitative metabolic and sleep
traits rigorously measured under laboratory conditions. We
hypothesized that the genetic regulation of sleep EEG activ-
ity, and especially SWA, may be correlated with the genetic
regulation contributing to the variance of metabolic traits
including insulin sensitivity and pancreatic b-cell function.
The findings suggest that the large body of epidemiologic
and experimental evidence linking sleep disturbances and
increased risk of diabetes may partly reflect pleiotropy in
the genetic control of sleep and glucose metabolism.

RESEARCH DESIGN AND METHODS

Subjects
One hundred twenty-three members of a large pedigree
comprising over 180 members spanning three generations
were invited to participate in the study. Family members
under 18 years of age were excluded. All enrolled subjects
provided written informed consent and the study was
conducted in accordance with the Declaration of Helsinki.
The family members were all of self-reported European de-
scent. Forty-eight subjects completed the study. The pedigree
is shown in Fig. 1.

Study Protocol
The protocol involved two consecutive nights of polysomno-
graphic recording and an oral glucose tolerance test (OGTT).

Recordings were performed in the research laboratory of the
Sleep, Metabolism and Health Center of The University of
Chicago, except for eight subjects who were studied in an
out-of-campus location (at their home or at a hotel) using
ambulatory equipment. For 1 week prior to the recording
session, participants were asked to maintain a standardized
schedule of bedtimes, designed in accordance with their self-
reported usual sleep-wake habits. They were instructed not
to deviate from this schedule by more than 30 min and to
wear a wrist activity monitor (Actiwatch; Philips Respironics,
Murrysville, PA) at all times. On the morning following the
second night of sleep recording, after a 12-h fast, a blood
sample was collected for blood chemistry and hemoglobin A1c
(HbA1c) and a 3-h OGTT was performed. In two subjects,
the OGTT took place after the first night of sleep recording
for logistic reasons. On the evening prior to metabolic testing,
a standardized dinner was served at 1930, with 50% of the
calories derived from carbohydrates. For each subject, the
total calorie content of the standardized dinner (600, 700,
800, or 1,000 kcal) approximated one-third of the subject’s
calculated total energy expenditure, which was estimated
using the Schofield equation (32), based on sex, age, and
weight. During the OGTT, blood was collected at 215, 0,
30, 60, 90, 120, 150, and 180 min after ingestion of 75 g of
a glucose solution. Results of the 215 and 0 time points
were averaged to obtain a baseline value.

Sleep Analysis
Sleep recordings were performed using a digital EEG ac-
quisition system (Neurofax EEG-1100 A; Nihon Kohden,
Tokyo, Japan). Surface electrodes were used to record EEG
signals (two central referential EEG leads [C3-A2 and C4-
A1] and two occipital referential leads [O1-A2 and O2-A1]),
bilateral electrooculogram, and submental electromyogram.
The presence or absence of obstructive sleep apnea (OSA)
was evaluated by measuring oronasal airflow signal by
thermal flow sensor and nasal pressure transducer, re-
spiratory effort signal by thoracic and abdominal piezoelec-
tric belts, and arterial oxygen saturation by pulse oximetry.
Assessment of OSA was conducted during the first night of
recording, except for the two subjects who had an OGTT in
the morning after the first night, who underwent record-
ing of the respiratory variables during the second night.
Polysomnographic recordings were visually scored at 30-s
intervals in stages wake, 1 (N1), N2, N3 (SWS), and REM
using standardized criteria (33) by two experienced scorers.
Respiratory events, periodic limb movements, and micro-
arousals were scored according to established criteria (33).
The presence of OSA was defined by an apnea-hypopnea
index (AHI) $5 events per hour of sleep.

Spectral analysis of the EEG recordings was performed
on the central EEG leads (C3, C4) using the PRANA software
(PhiTools, Strasbourg, France) as previously described (13).
During acquisition, EEG signals were filtered (0.3–35 Hz)
and sampled at 200 Hz with a 16-bit resolution. After re-
moval of muscular, ocular, and movement artifacts by au-
tomated detection followed by visual inspection, a fast-Fourier
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transform was computed on the EEG signal by using a Hanning
window on consecutive 4-s intervals, resulting in a fre-
quency resolution of 0.25 Hz. Power spectra of 15 consecutive
2-s intervals were averaged and matched with sleep scores.
Delta (SWA), theta, alpha, and sigma activities were calculated
as the absolute spectral power in the frequency bands 0.75–
4.5 Hz, 4.5–8.5 Hz, 8.5–12 Hz, and 12.5–15 Hz, respec-
tively. Average spectral power for each frequency was calculated
in NREM sleep during the first 6 h of sleep using the second
night of recordings. In four subjects, average spectral power
was calculated from the first night of recording due to
technical artifacts in the EEG signal from the second night
of recording.

Metabolic Assays
Glucose, insulin, and C-peptide levels were assayed on all
samples collected during the OGTT. HbA1c was measured

on a sample collected under fasting conditions. Plasma glu-
cose levels were assayed by the glucose oxidase method;
serum insulin and C-peptide levels were assayed by chemilu-
minescence assays using the Immulite 2000 System (Siemens
Healthcare Diagnostics, Tarrytown, NY).

Metabolic Phenotypes
A number of metabolic phenotypes were derived from
OGTT data. Fasting insulin resistance was estimated using
the HOMA-IR ([fasting glucose in mg/dL 3 fasting insulin
in mU/mL]/405) (34), and fasting insulin sensitivity was
estimated by the QUICKI (1/[Ln(glucose in mg/dL) +
Ln(insulin in mU/mL)]) (35). Insulin sensitivity during OGTT
was estimated by the Matsuda index (10,000/=[fasting
glucose in mg/dL 3 fasting insulin in mU/mL 3 mean
glucose in mg/dL3 mean insulin in mU/mL]) (36). Fasting
b-cell function was estimated as the fasting HOMA-b

Figure 1—Pedigree. The shaded symbols represent the family members who completed the study. Squares represent men, circles represent
women. The index subject is indicated with an arrow. The crossed-out symbols indicate deceased family members.

Table 1—Heritability of metabolic phenotypes

n h2 (SE) LRT P value

Fixed-effect covariates

P value

Age Sex OSA

HbA1c 46 0.35 (0.33) 0.146 0.0114 ns ns

Fasting values
Glucose 46 0 0.5 ns ns ns
Insulin 48 0.60 (0.25)+ 0.015 ns ns ns
C-peptide 48 0.90 (0.15)+ 0.0001§ 0.0004 ns ns
ISR 42 0.79 (0.33)+ 0.02 ns ns ns
HOMA-IR 48 0.67 (0.26) 0.0125 0.007 ns ns
HOMA-b 48 0.30 (0.30) 0.165 ns ns ns
QUICKI 48 0.67 (0.26) 0.013 0.040 ns ns

Postchallenge values
Matsuda index 48 0 0.5 ns ns ns
Insulinogenic index 46 0 0.5 0.041 ns ns
AUC glucose 46 0 0.5 0.0003
AUC insulin 46 0 0.5 ns ns ns
IncrAUC glucose 46 0 0.5 0.0002 ns ns
IncrAUC insulin 46 0 0.5 ns ns ns
IncrAUC insulin/IncrAUC glucose 46 0 0.5 0.038 ns ns

SEs are shown in parentheses alongside all heritability estimates greater than zero. LRT P value: P values from LRT indicating whether the
heritability estimated is significantly different from zero. Fixed-effect covariates P value: reported P values from LRT indicating whether
the variable significantly impacted the heritability model. Age and sex were retained in the model regardless of their LRT P value, while BMI and
OSA were dropped if P . 0.1 (reported in table as not significant [ns]) to result in a parsimonious model. Statistically significant data appear in
boldface type. AUC, area under the curve; IncrAUC, incremental area under the curve. §P values exceeding the Bonferroni corrected threshold
for significance of P = 0.004 (corrected for the number of traits analyzed). +BMI was a significant covariate and estimate was adjusted for BMI.
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([360 – fasting insulin in mU/mL]/[fasting glucose in mg/dL
– 63]) (34). The b-cell response to the oral glucose challenge
was estimated by the insulinogenic index (Dinsulin0–30min in
pmol/L/Dglucose0–30min in mmol/L) (37) as well as the ratio
of incremental area under the curve of insulin to that of
glucose. Insulin secretion rates (ISRs) were derived from
C-peptide concentrations by mathematical deconvolution
using parameters individually adjusted for sex, age, and
body surface area (38).

Variance-Component Model Assuming a Pedigree
The pedigree-based variance-component method assumes
the following linear model:

y ¼ mþ Zbþ «

where y is the phenotype vector, m is the baseline mean, Z
is a matrix of observed additive factors, b is the vector of

effect sizes, and « is the residual vector. The model can
include a sum of covariate effects. The residual vector is
assumed to be Gaussian:

«;Nð0; 2Fs2
a þ gs2

c þ s2
eÞ

centered at 0 and with covariance matrix that is a function
of the kinship matrix F (wherein each entry shows the
expected proportion of the genome shared between a pair
of subjects), s2

a is the additive genetic variance, g is the
matrix showing shared environment (between a pair of
subjects), s2

c is the variance attributable to the shared en-
vironment and s2

e is the residual environmental variance.
The univariate heritability is then defined as:

h2 ¼ s2
a

.
s2
a þ s2

c þ s2
e

Figure 2—For glucose, insulin, C-peptide, and ISR, the upper panel illustrates the mean (6 SEM) concentrations measured at each time point of
the OGTT. Gray vertical bars in the lower panels show heritability for each time point. Fixed covariates included age and sex. BMI was included in
the model if it significantly (P, 0.1) impacted the results based on a LRT comparing the models with and without BMI. Error bars are shown for
all heritability estimates greater than zero. BL, baseline. *P , 0.05; **P , 0.01.
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A likelihood ratio test (LRT), comparing the likelihood of a
full model with that of a nested model (without the additive
genetic component), is applied to test for a nonzero additive
genetic variance.

Univariate Heritability Analysis
Heritability (h2) estimates were obtained from a variance
components model implemented in the Sequential Oligo-
genic Linkage Analysis Routine (SOLARv4.1.5) software
package. Univariate heritability estimates indicate the
proportion of trait variance explained by genetic variance
estimated from familial relationships under an additive
genetic model after accounting for important covariates.
Both quantitative sleep and metabolic traits were inverse-
normalized when the variable demonstrated high kurtosis.
We used the SOLAR covariate screening procedure in which
the effect of each covariate on the additive model was eval-
uated using a LRT. For all analyses, covariates age and sex
were retained regardless of whether they significantly af-
fected the model. Screened covariates included BMI and
presence of OSA (yes/no) for heritability of metabolism
analyses and BMI, presence of OSA (yes/no), and psycho-
tropic medication for heritability of quantitative sleep trait

analyses. These covariates were retained if they modestly
impacted the model (LRT P , 0.1) and otherwise were
dropped to create a more parsimonious model (Table 1).

Bivariate Analysis and Calculation of Standard Error
To test the hypothesis that quantitative sleep and metabolic
traits share additive genetic risk, we performed pairwise
bivariate heritability analyses between metabolic and sleep
variables that showed significant univariate heritability. We
tested fasting insulin, fasting C-peptide, ISR, and HOMA-
IR against delta, theta, and sigma power, while retaining
covariates that were included in either or both univariate
analyses.

The bivariate analysis of two traits requires estimation of
the corresponding variances s2

a , s
2
c , and s2

e for each trait
(as defined above) but also the correlations from the corre-
sponding components. In particular, we are interested in an
estimate of the correlation ra, which provides a measure of
shared additive genetic influences on the two phenotypes,
P1 and P2, under comparison and which is provided by
SOLAR. Using a Taylor series expansion (39) for the sam-
pling variance r̂a, the standard error (SE) of the estimated
genetic correlation is approximately:

Table 2—Heritability of sleep phenotypes

n h2 (SE) LRT P value

Fixed-effects covariates

P value

Age Sex OSA (yes/no) Medication

Total sleep time 46 0 0.5 0.0001 0.008 ns ns

Sleep efficiency (%) 46 0.32 (0.40) 0.186 0.002 0.025 ns ns

Sleep latency (min) 46 0.41 (0.25) 0.054 ns ns ns ns

Total wake (min) 46 0.22 (0.57) 0.444 ns ns ns ns

Total wake (%) 46 0.24 (0.58) 0.418 0.073 ns ns ns

WASO (min) 45 0 0.5 0.033 ns ns ns

AHI (events/h) 45 0 0.5 0.005 ns – ns

N1 (min) 46 0 0.5 ns ns ns ns

N1 (%) 46 0 0.5 ns ns ns ns

N2 (min) 46 0 0.5 ns 0.032 ns ns

N2 (%) 46 0 0.5 0.006 ns ns 0.026

SWS min 46 0.43 (0.26) 0.058 ,0.0001 ns ns ns

SWS % 46 0.49 (0.24) 0.030 0.0007 ns ns ns

REM min 46 0.65 (0.44) 0.052 ns ns ns ns

REM % 46 0.44 (0.30) 0.069 ns ns ns ns

Delta power (mV2) 48 0.50 (0.22) 0.011 0.0001 0.017 ns ns

Theta power (mV2) 48 0.93 (0.15) 0.0001§ ns 0.0004 ns 0.085

Alpha power (mV2) 48 0.51 (0.41) 0.102 ns 0.027 ns ns

Sigma power (mV2) 48 0.71 (0.26) 0.023 ns 0.004 ns ns

SEs are shown for all heritability estimates greater than zero. LRT P value: P values from LRT indicating whether the heritability estimated is
significantly different from zero. Fixed-effects covariates P value: reported P values from LRT indicating whether the variable significantly
impacted the heritability model. Age and sex were retained in the model regardless of their LRT P value, while OSA, BMI, and medication
were dropped if P . 0.1 (reported in table as not significant [ns]) to result in a parsimonious model. Sleep stages are expressed as minutes as well as
percent of total sleep time. Significantly different data appear in boldface type. Trends for statistical significance appear in italics. WASO, wake after sleep
onset. §P values exceeding the Bonferroni corrected threshold for significance of P = 0.003 (corrected for the number of traits analyzed).
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SEðbraÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 rarPÞ2 þ ðra 2 rPÞ2

h2P1
h2P2

N2varðFijÞ

s

where rP is the phenotypic correlation, h2P1and h2P2are the
heritability estimates from the univariate analysis for the
two phenotypes P1 and P2 respectively, N is the study
sample size, and Fij is the kinship coefficient.

RESULTS

The demographic characteristics of the 48 participants are
given in Supplementary Table 1. Mean age (6 SEM) was
45 6 2 years. Participants were mostly overweight or obese
and had comorbidities, including hypertension, dyslipide-
mia, coronary heart disease, and psychoaffective disorders.
Nearly half of the participants had OSA. Five participants
had type 2 diabetes, three of which were newly diagnosed
during the current study.

Univariate and Bivariate Heritability of Sleep
and Metabolic Phenotypes
We first calculated the heritability of height (h2 = 0.74, SE =
0.27, P = 0.008) and BMI (h2 = 0.81, SE = 0.42, P = 0.01) in
our family sample, which yielded estimates within the
expected previously reported range, indicating that the
study was powered to examine highly heritable traits. We
then determined the heritability of metabolic traits (Table 1).
Figure 2 illustrates the heritability estimates of glucose, in-
sulin, C-peptide, and ISR at each time point of the OGTT.
For glucose, only the value at +180 min had significant
heritability (h2 = 0.57, SE = 0.31, P = 0.046). In contrast,
the variables characterizing insulin secretion demonstrated
significant heritability at baseline under fasting conditions
and at 180 min when fasting conditions had nearly re-
sumed. However, no appreciable heritability was detected
at time points 30, 60, 90, and 120 min of the challenge test.
Thus, insulin, C-peptide, and ISR demonstrated significant
heritability, ranging between 0.60–0.90 at baseline and be-
tween 0.65–0.81 at 180 min. Additionally, HOMA-insulin
resistance (IR), a marker of fasting insulin resistance, and
QUICKI, a measure of fasting insulin sensitivity, were sig-
nificantly heritable (Table 1). Heritability estimates were
identical for HOMA-IR and QUICKI, as expected as these
two indices are arithmetically related. Overall glycemic con-
trol, as assessed by HbA1c and a surrogate measure of b-cell
function during the fasting state (HOMA-b), did not show
evidence of significant heritability (Table 1). Consistent
with the lack of significant heritability of insulin, C-peptide,
and ISR levels postglucose challenge, indices quantifying in-
sulin release (insulinogenic index) and action (Matsuda In-
dex) showed no evidence of heritability.

Next, we determined the univariate heritability for quan-
titative sleep traits (Table 2 and Fig. 3). We found significant
heritability for the proportion of total sleep time spent in
SWS (SWS %, h2 = 0.49, SE = 0.24, P = 0.03), consistent
with the findings of twin studies (40). Although heritability
of SWS duration (SWS min, h2 = 0.43, SE = 0.26, P = 0.058),

duration of REM sleep (REM min, h2 = 0.65, SE = 0.44, P =
0.052), and proportion of total sleep time spent in REM
sleep (REM %, h2 = 0.44, SE = 0.30, P = 0.069) failed to
reach statistical significance at the P , 0.05 level, the point
estimates were substantial. Additionally, we found signifi-
cant heritability for variables obtained by spectral analysis
of the EEG, including SWA or delta power (h2 = 0.50, SE =
0.22, P = 0.011), theta power (h2 = 0.93, SE = 0.15, P =
0.0001), and sigma power (h2 = 0.71, SE = 0.26, P = 0.023).
Heritability estimate for alpha power failed to reach signif-
icance (h2 = 0.51, SE = 0.41, P = 0.102). None of the re-
spiratory variables obtained from polysomnography (e.g.,
AHI, degree of oxygen desaturation) demonstrated signifi-
cant heritability.

Only fasting C-peptide and theta power demonstrated
univariate heritability estimates that exceeded a strict
Bonferroni correction for the number of phenotypes tested.
However, we note that many of the phenotypes (e.g.,
fasting HOMA-IR and insulin) are highly correlated (Sup-
plementary Table 3), and therefore a strict Bonferroni cor-
rection is likely to be overly conservative. Nevertheless, our
results should be interpreted with caution until replicated.

In bivariate analyses, we identified a significant ge-
netic correlation between baseline ISR and delta power
(rhoG = 1.0, SE = 0.46, P = 0.0062) in the first 6 h of sleep
(Supplementary Table 2 and Fig. 4). Due to sample size
limitations, SEs were sizable for the majority of the genetic
correlations reported here, for example, the SE of the

Figure 3—Heritability estimated for sleep variables (upper panel)
and spectral analysis results (bottom panel). Sleep stages (N1, N2,
SWS, and REM) are expressed as percentage of total sleep time.
NREM total, delta, theta, alpha, and sigma power were computed
in the first 6 h of sleep. Fixed covariates included age and sex.
Additional covariates including BMI and psychotropic medica-
tions were included in the model if they significantly (P , 0.1)
impacted the results based on a LRT comparing the models with
and without these covariates. Error bars are shown for all estimates
greater than zero.
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correlation between baseline ISR and delta power was 0.46,
suggesting that the true point estimate of the genetic cor-
relation falls between 0.54 and 1.0. None of the estimates
of environmental correlation (rhoE) reached statistical sig-
nificance (P , 0.05).

DISCUSSION

The current study combined in-depth concurrent pheno-
typing of sleep and metabolic traits using gold standard
assessments in a large family of self-reported European
descent to explore the novel hypothesis that common genetic
pathways may underlie brain EEG activity during NREM
sleep and glucose metabolism. The hypothesis of a pleiotropic
control of sleep and glucose metabolism was suggested by
a large body of evidence linking sleep disturbances and
diabetes risk that has accumulated over the past 20 years.
Our finding of a significant joint heritability between EEG
spectral power in the delta range (i.e., SWA) and a measure
of insulin secretion supports our hypothesis.

In addition to replicating significant heritability for
metabolic traits (5,20–24), we provide novel family-based
estimates of heritability for several quantitative sleep traits
that are consistent with estimates from published twin
studies (11,40). Our univariate heritability results are con-
sistent with previous studies that focused on either diabetes

risk or sleep traits. We indeed confirm and extend find-
ings from previous heritability studies of insulin sensitivity
(HOMA-IR and QUICKI) (23,24,41,42) and pancreatic b-cell
function (fasting insulin and ISR) (20,22–24,43–45). Inter-
estingly, heritability measures of insulin, HOMA-IR, and
ISR became nonsignificant at intermediate time points of
the OGTT and regained significance at 180 min. The loss
and recovery of insulin trait heritability in our study was
most likely due to changing phenotypic variance across
the time points. For example, upon glucose challenge,
variance in the insulin measures (shown as the SEM at
each time point of the upper panels of Fig. 2) increased
then decreased as glucose was metabolized and insulin lev-
els returned to baseline. However, because genetic variance
is stable, the resulting ratio of genetic to phenotypic vari-
ance (i.e., heritability) decreased during intermediate time
points. The failure to detect significant heritability at in-
termediate time points of the OGTT could also relate to the
limited sample size of our study. Although the literature on
stability of the insulin heritability estimate across OGTT
time points is sparse, a few studies with sample sizes in
the hundreds have indeed reported significant heritability
for OGTT measures at intermediate time points (22,23,46).

Although several genome-wide association studies of sleep
traits have been published, few investigators have examined

Figure 4—A heat map illustrating the genetic correlations calculated with SOLAR using the pedigree relationships. Blue indicates negative
correlations and red indicates positive correlations. Although the point estimates are large for several trait pairs due to the small sample size, the
SE are also sizeable and the only correlation reaching significance is delta power/ISR (rhoG = 1, SE = 0.46, P = 0.0062), indicated with an
asterisk.
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the heritability of quantitative EEG variables derived from
spectral analysis, and those that have exclusively examined
twins. In these studies, significant genetic influence was
reported for SWS (11,40) and REM sleep duration (11), as
well as for the spectral composition of NREM sleep (11).
Our results, which accounted for age, sex, BMI, and the use
of psychoactive medications, show significance for the her-
itability of percent time spent in SWS and a strong trend
for the heritability of the absolute duration of SWS and
REM sleep, as well as for percent time spent in REM sleep.
Consistent with existing evidence (11,40), we found no
heritability for total wake time. Additionally, we found sig-
nificant heritability for delta, theta, and sigma activities.
It is noteworthy that during a normal night of sleep, the
frequency of EEG slow waves overlaps, to some extent,

the delta and theta frequency ranges and that sigma ac-
tivity is in a strong inverse relationship with delta activ-
ity. Thus, our findings of high heritability estimates of
delta, theta, and sigma activities support the hypothesis
that the depth or intensity of NREM sleep, as reflected in
the abundance and amplitude of EEG slow waves, is under
genetic control.

Delta power is a stable individual trait that is highly
heritable (10,12). This well-documented notion, taken
together with our experimental observation that selective
suppression of delta power causes a decrease in insulin sen-
sitivity with no compensatory increase in insulin secretion,
resulting in increased diabetes risk (13), led us to consider
the possibility that the genetic regulation of these basic
physiologic functions—sleep and glucose regulation—may

Figure 5—Four possible causal models underlying the observed relationship between glucose metabolism and NREM sleep quality. The panels
illustrate the following models in which genetic effects govern NREM sleep quality that in turn influences glucose metabolism (A), genetic effects
govern glucose metabolism which in turn influences NREM sleep quality (B), NREM sleep quality and glucose metabolism are coregulated
through shared genetic effects (C), and NREM sleep quality and glucose metabolism are coregulated through shared genetic effects and
influence each other (D). Our genetic correlation results rule out the models shown in panels A and B. Taken together with experimental findings,
our data suggests the most likely model underlying the relationship between NREM sleep and glucose metabolism is shown in panel D.
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be shared and that, in nonlaboratory settings, this shared
biology contributes to the observed phenotypic and genetic
correlation between poor sleep and risk for type 2 diabetes.
The significant bivariate genetic correlation between a mea-
sure of b-cell function and delta activity (Fig. 4) detected in
the current study is inconsistent with a strict causal model
in which variance in one set of traits (sleep or metabolism)
results in variance in the other set of traits (Fig. 5). Instead,
our results (Fig. 4) suggest a model of joint heritability in
which both insulin secretion and SWA are influenced by
a partially overlapping set of genes. It is also likely that
sleep quality and glucose metabolism influence each other
(Fig. 5).

In conclusion, our analysis of highly accurate heritable
phenotypes in a large three-generation family of European
descent has provided novel evidence for pleiotropy in the
genetic control of objectively assessed sleep traits and
glucose homeostasis. Although the findings require replica-
tion and extension, they identify a putative mechanistic
pathway linking sleep disturbances and the risk of type 2
diabetes, with important potential clinical implications. In
particular, as sleep quality and b-cell function both deteri-
orate in the course of aging, our findings of a robust joint
heritability of fasting ISR and intensity of deep NREM sleep
suggest that a common genetic pathway may underlie the
chronology of metabolic and sleep senescence.
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