Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original contribution

Glucose Transport Across Ocular Barriers of the Streptozotocin-Diabetic Rat

  1. Joseph Dimattio,
  2. Norman Altszuler,
  3. Steven Ellis and
  4. José A Zadunaisky
  1. Department of Physiology and Biophysics and the Department of Pharmacology, New York University Medical Center 550 First Avenue, New York, New York 10016
  1. Address reprint requests to Norman Altszuler at the above address.
Diabetes 1981 Nov; 30(11): 903-906. https://doi.org/10.2337/diab.30.11.903
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The transport kinetics across the plasma-aqueous and plasma-vitreous barriers were studied in normal and long-term streptozotocin-diabetic rats, using trace amounts of [14C]-L-glucose and [3H]-3-O-methyl-D-glucose. The former is passively transported while the latter uses the same transport-facilitating system as D-glucose. Transport rates of L-glucose were significantly higher in the diabetic rats, with ocular entry rates from the plasma being increased by 69% across both barriers. Thus, the data indicate that in experimental diabetes the passive permeability of the bloodocular barriers is significantly increased.

By contrast, calculated transport rate constants for 3-O-methyl-O-glucose, when adjusted for the hyperglycemia and the increased passive glucose movement, are not altered in the diabetic animal. Nevertheless, there is actually more mass D-glucose movement due to the prevailing hyperglycemia. The present study suggests that although streptozotocin diabetes alters plasma-ocular glucose transport, there is no direct impairment of glucose carrier function.

Alterations in transport occurred at both ocular barriers, suggesting that involvement is general and that both the retinal pigment epithelium and the ciliary epithelium may be affected by the diabetes. It is unknown whether the increase in passive movement is related to the prevailing hyperglycemia or to insulin deficiency or other unknown factors.

  • Received February 2, 1981.
  • Revision received July 1, 1981.
  • Accepted July 1, 1981.
  • Copyright © 1981 by the American Diabetes Association

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this Issue

November 1981, 30(11)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Glucose Transport Across Ocular Barriers of the Streptozotocin-Diabetic Rat
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Glucose Transport Across Ocular Barriers of the Streptozotocin-Diabetic Rat
Joseph Dimattio, Norman Altszuler, Steven Ellis, José A Zadunaisky
Diabetes Nov 1981, 30 (11) 903-906; DOI: 10.2337/diab.30.11.903

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Glucose Transport Across Ocular Barriers of the Streptozotocin-Diabetic Rat
Joseph Dimattio, Norman Altszuler, Steven Ellis, José A Zadunaisky
Diabetes Nov 1981, 30 (11) 903-906; DOI: 10.2337/diab.30.11.903
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Buffy Coat Transfusions in Early Type I Diabetes
  • Diminished Flare Response in Neuropathic Diabetic Patients: Comparison of Effects of Substance P, Histamine, and Capsaicin
  • Blood-Brain Barrier Choline Transport Is Reduced in Diabetic Rats
Show more Original contribution

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.