Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Contributions

The Effect of Graded Doses of Insulin on Total Glucose Uptake, Glucose Oxidation, and Glucose Storage in Man

  1. Daniel Thiebaud,
  2. Eric Jacot,
  3. Ralph A Defronzo,
  4. Evelyne Maeder,
  5. Eric Jequier and
  6. Jean-Pierre Felber
  1. Division of Clinical Biochemistry C.H.O.V., 1011 Lausanne The Institute of Physiology, The University of Lausanne Switzerland; and the Department of Medicine, Yale University, School of Medicine New Haven, Connecticut
  1. Address reprint requests to Dr. Ralph A. DeFronzo, 2074 LMP, Yale New Haven Hospital, 333 Cedar Street, New Haven, Connecticut 06510.
Diabetes 1982 Nov; 31(11): 957-963. https://doi.org/10.2337/diacare.31.11.957
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The dose-response relationship between plasma insulin concentration and total glucose uptake, glucose oxidation, and glucose storage was examined in 22 healthy young volunteers by employing the euglycemic insulin clamp technique in combination with indirect calorimetry. Insulin was infused at five rates to achieve steady-state hyperinsulinemic plateaus of 62 ± 4, 103 ± 5, 170 ± 10, 423 ± 16, and 1132 ± 47 μU/ml. With increasing plasma insulin concentrations within the physiologic range, there was a linear increase in glucose uptake with a half maximally effective insulin concentration of 72 μU/ml. Glucose uptake by all tissues of the body reached 80% of its maximum value (12.6 mg/kg · min) at a plasma insulin concentration of ∼200 μU/ml. In contrast to total glucose uptake, glucose oxidation plateaued more quickly, achieved a maximum rate of only 4.0 mg/kg · min, and displayed a lower half maximally effective insulin concentration of 40 μU/ml. The increase in glucose uptake with progressively increasing plasma insulin levels was primarily the result of an increase in glucose storage, with a half maximally effective insulin concentration of 105 μU/ml and maximum rate of 8.7 mg/kg · min. Glucose storage represented over 60–70% of total glucose uptake at all insulin concentrations. After achieving maximum rates of insulin-mediated glucose uptake (plasma insulin concentration = 1132 μU/ml), hyperglycemia (+125 mg/dl) was superimposed on hyperinsulinemia to further enhance glucose transport. Under these conditions, total glucose uptake (32.5 mg/kg · min, P < 0.001) was markedly augmented but no significant increase in glucose oxidation was observed. These results indicate a true saturation of the glucose oxidation pathway. With pro-gressively increasing doses of insulin, the glucose storage represents the major route of glucose disposal.

  • Received July 28, 1982.
  • Accepted June 16, 1982.
  • Copyright © 1982 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

November 1982, 31(11)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Effect of Graded Doses of Insulin on Total Glucose Uptake, Glucose Oxidation, and Glucose Storage in Man
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Effect of Graded Doses of Insulin on Total Glucose Uptake, Glucose Oxidation, and Glucose Storage in Man
Daniel Thiebaud, Eric Jacot, Ralph A Defronzo, Evelyne Maeder, Eric Jequier, Jean-Pierre Felber
Diabetes Nov 1982, 31 (11) 957-963; DOI: 10.2337/diacare.31.11.957

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

The Effect of Graded Doses of Insulin on Total Glucose Uptake, Glucose Oxidation, and Glucose Storage in Man
Daniel Thiebaud, Eric Jacot, Ralph A Defronzo, Evelyne Maeder, Eric Jequier, Jean-Pierre Felber
Diabetes Nov 1982, 31 (11) 957-963; DOI: 10.2337/diacare.31.11.957
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • HLA-DQ-Restricted, Islet-Specific T-Cell Clones of a Type I Diabetic Patient: T-Cell Receptor Sequence Similarities to Insulitis-Inducing T-Cells of Nonobese Diabetic Mice
  • STZ Transport and Cytotoxicity: Specific Enhancement in GLUT2-Expressing Cells
  • Beneficial Influence of Glycemic Control Upon the Growth and Function of Transplanted Islets
Show more Original Contributions

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.