Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original contribution

Structure of the Human Erythrocyte Insulin Receptor

  1. Glenn M Ward and
  2. Len C Harrison
  1. Department of Diabetes and Endocrinology and the University of Melbourne Department of Medicine, The Royal Melbourne Hospital Victoria 3050, Australia
  1. Address reprint requests to Dr. G. Ward, Endocrine Unit, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia.
Diabetes 1986 Jan; 35(1): 101-105. https://doi.org/10.2337/diab.35.1.101
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The structure of the insulin receptor in intact human erythrocytes was defined using the techniques of disuccinimidyl suberate (DSS) cross-linking of 125I-insulin and surface [125I]iodination followed by receptor immunoprecipitation. In contrast to a recent report, we found the erythrocyte insulin receptor to be similar in structure to that in classic target tissues for insulin, consisting of at least three species of molecular weight approximately 295,000, 265,000, and 245,000, containing disulfide-linked subunits of molecular weight approximately 130,000 and 95,000. The interconversion of the three oligomeric forms could mediate changes in receptor affinity as postulated in other tissues. The 95,000 subunit was detected by immunoprecipitation only if surface iodination was performed in a Tris/Hepes buffer using lodogen and not if phosphate-buffered saline or lactoperoxidase iodination was used. These findings indicate that the lack of a bioeffect of insulin in erythrocytes is not explained by a gross defect in the structure of their insulin receptors. The apparent identity of the insulin receptor structure in erythrocytes and insulin target tissues provides a firmer basis for the use of erythrocytes in some circumstances to reflect insulin receptor status.

  • Received October 14, 1984.
  • Revision received July 23, 1984.
  • Copyright © 1986 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

January 1986, 35(1)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Structure of the Human Erythrocyte Insulin Receptor
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Structure of the Human Erythrocyte Insulin Receptor
Glenn M Ward, Len C Harrison
Diabetes Jan 1986, 35 (1) 101-105; DOI: 10.2337/diab.35.1.101

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Structure of the Human Erythrocyte Insulin Receptor
Glenn M Ward, Len C Harrison
Diabetes Jan 1986, 35 (1) 101-105; DOI: 10.2337/diab.35.1.101
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Buffy Coat Transfusions in Early Type I Diabetes
  • Diminished Flare Response in Neuropathic Diabetic Patients: Comparison of Effects of Substance P, Histamine, and Capsaicin
  • Blood-Brain Barrier Choline Transport Is Reduced in Diabetic Rats
Show more Original contribution

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.