Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Low-Dose Streptozocin-Induced Diabetes in Mice: Electron Microscopy Reveals Single-Cell Insulitis Before Diabetes Onset

  1. Victoria Kolb-Bachofen,
  2. Stefan Epstein,
  3. Ulrich Kiesel and
  4. Hubert Kolb
  1. Institute for Biophysics and Electron Microscopy, Department of Medicine, and the Diabetes Research Institute, University Düsseldorf Düsseldorf, Federal Republic of Germany
  1. Address correspondence and reprint requests to Dr. H. Kolb, Diabetes-Forschungsinstitut, Auf'm Hennekamp 65, D-4000 Düsseldorf 1, FRG.
Diabetes 1988 Jan; 37(1): 21-27. https://doi.org/10.2337/diab.37.1.21
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We investigated the morphology of mouse islets 5 days after completion of low-dose streptozocin treatment of C57BL/6 mice by electron microscopy. At this stage, mice were still normoglycemic and light microscopy did not reveal massive islet infiltration. The electron-microscopic investigation revealed two characteristics indicative of ongoing islet cell destruction. In all islets investigated, lysed islet β-cells were recognized by disrupted plasma membranes and concomitantly decreased plasma contrast. Many of the lysed islet β-cells still contained numerous insulin granules. We also found immunocytes scattered throughout the islets, most of which could be identified as macrophages. Some were found engaged in phagocytosis of islet β-cell debris. This early stage of islet lesion termed single-cell insulitis is followed by the well-known later stage of massive infiltration easily recognized in light microscopy. Administration of silica particles to mice treated with low-dose streptozocin inhibited macrophage infiltration of islets as shown by immunocytochemistry with macrophage-specific monoclonal antibody F4/80. In parallel, the development of hyperglycemia was suppressed. The observations favor a pathogenic role of macrophages in islet destruction.

  • Received February 11, 1987.
  • Revision received June 26, 1987.
  • Accepted March 15, 1993.
  • Copyright © 1988 by the American Diabetes Association

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this Issue

January 1988, 37(1)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Low-Dose Streptozocin-Induced Diabetes in Mice: Electron Microscopy Reveals Single-Cell Insulitis Before Diabetes Onset
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Low-Dose Streptozocin-Induced Diabetes in Mice: Electron Microscopy Reveals Single-Cell Insulitis Before Diabetes Onset
Victoria Kolb-Bachofen, Stefan Epstein, Ulrich Kiesel, Hubert Kolb
Diabetes Jan 1988, 37 (1) 21-27; DOI: 10.2337/diab.37.1.21

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Low-Dose Streptozocin-Induced Diabetes in Mice: Electron Microscopy Reveals Single-Cell Insulitis Before Diabetes Onset
Victoria Kolb-Bachofen, Stefan Epstein, Ulrich Kiesel, Hubert Kolb
Diabetes Jan 1988, 37 (1) 21-27; DOI: 10.2337/diab.37.1.21
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Troglitazone Upregulates LDL Receptor Activity in HepG2 Cells
  • Temporal and Quantitative Correlations Between Insulin Secretion and Stably Elevated or Oscillatory Cytoplasmic Ca2+ in Mouse Pancreatic β-Cells
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.