Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Correlation Between Minimal Secretory Capacity of Pancreatic β-Cells and Stability of Diabetic Control

  1. Masahiro Fukuda,
  2. Akira Tanaka,
  3. Yasuhiro Tahara,
  4. Hiroshi Ikegami,
  5. Yoshihiro Yamamoto,
  6. Yuichi Kumahara and
  7. Kenji Shima
  1. Department of Medicine and Geriatrics, Osaka University Medical School Osaka Department of Laboratory Medicine, Tokushima University School of Medicine Tokushima, Japan
  1. Address correspondence and reprint requests to Masahiro Fukuda, M.D., Department of Medicine and Geriatrics, Osaka University Medical School, Fukushima-ku, Osaka, 553, Japan.
Diabetes 1988 Jan; 37(1): 81-88. https://doi.org/10.2337/diab.37.1.81
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The significance of the minimal secretory capacity of pancreatic β-cells for the stability of the plasma glucose level was studied in 20 patients with insulin-dependent diabetes mellitus. Changes in plasma concentrations of major counterregulatory hormones in response to hypoglycemia were also investigated in these patients to clarify their contribution to diabetic brittleness. β-Cell function was evaluated on the basis of elevation of plasma C-peptide immunoreactivity (CPR) during the intravenous glucagon test with a highly sensitive assay for plasma CPR that could detect as little as 0.03 ng/ml. After stimulation with glucagon, a significant increase in plasma CPR was observed in 10 of the patients whose β-cell function had been evaluated as completely depleted by a conventional assay for plasma CPR. A clear inverse correlation was found between the secretory capacity of pancreatic β-cells measured in this way and the degree of glycemic instability (r = −.74, P < .01). Infusion of insulin at a rate of 0.15 U.kg−1.h−1 for 60 min caused a continuous decrease in the plasma glucose level, resulting in neuroglycopenia in 7 of the 10 CPR nonresponders but only 2 of the CPR responders. During insulin-induced hypoglycemia, plasma glucagon immunoreactivity did not increase in the CPR nonresponders but increased significantly in the CPR responders. A positive correlation was found between the minimal residual β-cell capacity and the responsiveness of α-cells to hypoglycemia (r = .65, P < .01).In contrast to the difference in the responses of their pancreatic α-cells to hypoglycemia, the two groups showed more or less the same responses of plasma epinephrine, norepinephrine, growth hormone, and cortisol to hypoglycemia. Total lack of insulinogenic reserve inevitably results in loss of automatic regulation of the circulating insulin level and seems to be a major factor in causing hyperlability of diabetic control. The lack of β-cell function may be related causally to pancreatic α-cell dysfunction, which also contributes in part to metabolic variability in brittle diabetes.

  • Received January 2, 1987.
  • Revision received May 18, 1987.
  • Accepted May 18, 1987.
  • Copyright © 1988 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

January 1988, 37(1)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Correlation Between Minimal Secretory Capacity of Pancreatic β-Cells and Stability of Diabetic Control
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Correlation Between Minimal Secretory Capacity of Pancreatic β-Cells and Stability of Diabetic Control
Masahiro Fukuda, Akira Tanaka, Yasuhiro Tahara, Hiroshi Ikegami, Yoshihiro Yamamoto, Yuichi Kumahara, Kenji Shima
Diabetes Jan 1988, 37 (1) 81-88; DOI: 10.2337/diab.37.1.81

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Correlation Between Minimal Secretory Capacity of Pancreatic β-Cells and Stability of Diabetic Control
Masahiro Fukuda, Akira Tanaka, Yasuhiro Tahara, Hiroshi Ikegami, Yoshihiro Yamamoto, Yuichi Kumahara, Kenji Shima
Diabetes Jan 1988, 37 (1) 81-88; DOI: 10.2337/diab.37.1.81
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Mutation P291fsinsC in the Transcription Factor Hepatocyte Nuclear Factor-1α is Dominant Negative
  • Matrix Metalloproteinase Expression in Human Retinal Microvascular Cells
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.