Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Application of HPLC in Disposition Study of A14-125I-Labeled Insulin in Mice

  1. Hitoshi Sato,
  2. Akira Tsuji,
  3. Ken-Ichi Hirai and
  4. Young Sook Kang
  1. Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University Kanazawa,Japan
  1. Address correspondence and reprint requests to Prof. Akira Tsuji, PhD, Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa 920, Japan.
Diabetes 1990 May; 39(5): 563-569. https://doi.org/10.2337/diab.39.5.563
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

To describe quantitatively the in vivo distribution and elimination of insulin, high-performance liquid chromatography (HPLC) separation was applied to the pharmacokinetic study of human insulin labeled with 125I at tyrosine A14 (A14-125I-insulin) as a tracer. Intact A14-125I-insulin levels were determined by HPLC and trichloroacetic acid (TCA) precipitation in plasma and various tissues after its intravenous bolus injection into mice. TCA precipitation consistently overestimated the intactness of A14-125I-insulin compared with HPLC, possibly due to the presence of both a TCA-precipitable intermediate degradation product of labeled insulin found in HPLC elution profiles and reported high-molecular-weight forms of labeled insulin in plasma. Thus, TCA precipitation gave a considerably lower total plasma clearance (Cltot) value than HPLC. The half-life of A14-125I-insulin was prolonged by a simultaneous injection of 8 U/kg unlabeled insulin, and labeled insulin behaved similarly to [14C]inulin (an extracellular fluid marker). The concentration time profiles of HPLC-separated labeled insulin in plasma were analyzed by a noncompartmental moment method, and both Cltot and steady-state apparent volume distribution (VDSS) of A14-125I-insulin were considerably decreased by unlabeled insulin coadministration. In particular, VDSS of labeled insulin decreased by 79%, similar to that of inulin (181 ml/kg), suggesting that the nonspecific binding of labeled insulin to tissues was so small that VD88 of labeled insulin was reduced to the extracellular fluid volume (∼20% of the body weight) when its receptor binding was blocked effectively by unlabeled insulin. This observation, together with the 63% reduction of CI,tot by unlabeled insulin coadministration, demonstrated that saturable, receptor-mediated processes of distribution and elimination are essentially involved in the pharmacokinetics of HPLC-separated A14-125I-insulin.

  • Received April 3, 1989.
  • Revision received January 4, 1990.
  • Accepted January 4, 1990.
  • Copyright © 1990 by the American Diabetes Association

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this Issue

May 1990, 39(5)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Application of HPLC in Disposition Study of A14-125I-Labeled Insulin in Mice
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Application of HPLC in Disposition Study of A14-125I-Labeled Insulin in Mice
Hitoshi Sato, Akira Tsuji, Ken-Ichi Hirai, Young Sook Kang
Diabetes May 1990, 39 (5) 563-569; DOI: 10.2337/diab.39.5.563

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Application of HPLC in Disposition Study of A14-125I-Labeled Insulin in Mice
Hitoshi Sato, Akira Tsuji, Ken-Ichi Hirai, Young Sook Kang
Diabetes May 1990, 39 (5) 563-569; DOI: 10.2337/diab.39.5.563
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Mutation P291fsinsC in the Transcription Factor Hepatocyte Nuclear Factor-1α is Dominant Negative
  • Matrix Metalloproteinase Expression in Human Retinal Microvascular Cells
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.