Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Differential Expression of Retinal Insulin Receptors in STZ-Induced Diabetic Rats

  1. Charlotta Zetterström,
  2. Ann Benjamin and
  3. Steven A Rosenzweig
  1. Departments of Ophthalmology and Visual Science, and Cell Biology, Yale University School of Medicine New Haven, Connecticut Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina Charleston, South Carolina
  1. Address correspondence and reprint requests to Dr. Steven A. Rosenzweig, Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425.
Diabetes 1992 Jul; 41(7): 818-825. https://doi.org/10.2337/diab.41.7.818
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

A major complication of diabetes mellitus is retinopathy, which is characterized by increased neovascularization and neuronal degeneration in the retina. The biochemical processes underlying these changes are largely unknown. To better understand the role(s) of insulin or its lack and the resultant hyperglycemia in the etiology of these events, peripheral and neuronal (having 125 kDa and 115 kDa alpha subunits, respectively) insulin receptor subtype levels in the retinas of Streptozocin-induced diabetic rats were quantified. Immunoblot analysis of wheat germ agglutinin-agarose purified retinal membrane proteins revealed that retinas from diabetic rats expressed higher insulin receptor levels than retinas from control rats. This increase reflected a doubling of neuronal and a ∼20% decrease in peripheral insulin receptor subtypes, respectively. Insulin-treated diabetic rats had neuronal receptor levels equal to control values, at the same time having a further reduced number of peripheral insulin receptors relative to controls. Affinity labeling analysis of WGA-purified retinal membrane proteins indicated a 1.5-fold increase in neuronal and a 9% decrease in peripheral receptor subtypes, corroborating the immunoblot analysis. Neuronal insulin receptors in WGA-purified cortical synaptosomal membranes also were increased in diabetic rats, with insulin treatment reducing this effect. The up-regulated receptors retained their ability to undergo insulin-dependent autophosphorylation and, as such, did not appear functionally impaired. These data suggest that the expression of neuronal insulin receptors in retina and brain and peripheral insulin receptors in the retina of diabetic rats is sensitive to levels of insulin/glucose in peripheral circulation.

  • Received July 18, 1991.
  • Revision received March 24, 1992.
  • Accepted March 24, 1992.
  • Copyright © 1992 by the American Diabetes Association

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this Issue

July 1992, 41(7)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Differential Expression of Retinal Insulin Receptors in STZ-Induced Diabetic Rats
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Differential Expression of Retinal Insulin Receptors in STZ-Induced Diabetic Rats
Charlotta Zetterström, Ann Benjamin, Steven A Rosenzweig
Diabetes Jul 1992, 41 (7) 818-825; DOI: 10.2337/diab.41.7.818

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Differential Expression of Retinal Insulin Receptors in STZ-Induced Diabetic Rats
Charlotta Zetterström, Ann Benjamin, Steven A Rosenzweig
Diabetes Jul 1992, 41 (7) 818-825; DOI: 10.2337/diab.41.7.818
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Improved Glucose Tolerance in Zucker Fatty Rats by Oral Administration of the Dipeptidyl Peptidase IV Inhibitor Isoleucine Thiazolidide
  • Fibronectin Fragments Modulate Human Retinal Capillary Cell Proliferation and Migration
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.