Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Differential Regulation of Glucose Transport and Transporters by Glucose in Vascular Endothelial and Smooth Muscle Cells

  1. Nurit Kaiser,
  2. Shlomo Sasson,
  3. Edward P Feener,
  4. Nizza Boukobza-Vardi,
  5. Shinya Higashi,
  6. David E Moller,
  7. Sandra Davidheiser,
  8. Ronald J Przybylski and
  9. George L King
  1. Department of Endocrinology and Metabolism, and the Department of Pharmacology, Hebrew University-Hadassah Medical School, Jerusalem Israel Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School; and the Department of Medicine, Beth Israel Hospital Boston, Massachusetts Department of Anatomy, Case Western Reserve University Cleveland, Ohio
  1. Address correspondence and reprint requests to George L. King, MD, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215.
Diabetes 1993 Jan; 42(1): 80-89. https://doi.org/10.2337/diab.42.1.80
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Hyperglycemia has been implicated in the pathogenesis of both micro- and macrovascular complications in diabetes. Little is known, however, about glucose transporters and their regulation in thevascular system. In this study, the regulation of glucose transporters by glucose was examined in cultured BAECs and BSMCs, and in human arterial smooth muscle cells. Both BAECs and BSMCs transported glucose via the facilitated diffusion transport system. Glucose-transport activity in vascular smooth muscle cells was inversely and reversibly regulated by glucose. Exposure of BSMCs and HSMCs to high glucose decreased Vmax for 2DG and 3-O-MG uptake, whereas Km remained unchanged. The hexose-transport system of BAECs exhibited lower 2DG and 3-O-MG uptake compared with BSMCs and showed little or no adaptation to changes in ambient glucose. Northern blot analysis. GLUT1 protein, quantified by Western blot analysis, was more abundant in BSMCs than in BAECs and was decreased by ∼50% when medium glucose was elevated from 1.2 to 22 mM for 24 h. The alterations in the level of GLUT1 protein correlated with the changes observed in transport activity. These observations suggest differential regulation of glucose transporter in response to glucose between smooth muscle and endothelial cells. The sites of autoregulation may involve translational control and/or the stability of the protein in the smooth muscle cells. The ability of vascular smooth muscle cells to down-regulate glucose transport in response to chronic hyperglycemia may serve as a protective mechanism against possible adverse effects of increased intracellular glucose.

  • Received December 28, 1991.
  • Revision received August 6, 1992.
  • Accepted August 6, 1992.
  • Copyright © 1993 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

January 1993, 42(1)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Differential Regulation of Glucose Transport and Transporters by Glucose in Vascular Endothelial and Smooth Muscle Cells
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Differential Regulation of Glucose Transport and Transporters by Glucose in Vascular Endothelial and Smooth Muscle Cells
Nurit Kaiser, Shlomo Sasson, Edward P Feener, Nizza Boukobza-Vardi, Shinya Higashi, David E Moller, Sandra Davidheiser, Ronald J Przybylski, George L King
Diabetes Jan 1993, 42 (1) 80-89; DOI: 10.2337/diab.42.1.80

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Differential Regulation of Glucose Transport and Transporters by Glucose in Vascular Endothelial and Smooth Muscle Cells
Nurit Kaiser, Shlomo Sasson, Edward P Feener, Nizza Boukobza-Vardi, Shinya Higashi, David E Moller, Sandra Davidheiser, Ronald J Przybylski, George L King
Diabetes Jan 1993, 42 (1) 80-89; DOI: 10.2337/diab.42.1.80
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Enhanced Responsiveness of Blood Pressure to Sodium Intake and to Angiotensin II Is Associated With Insulin Resistance in IDDM Patients With Mcroalbuminuria
  • Prolonged Survival of Rat Islet and Skin Xenografts in Mice Treated with Donor Splenocytes and Anti-CD154 Monoclonal Antibody
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.