Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Mutational Analysis of the NH2-Terminal Glycosylation Sites of the Insulin Receptor α-subunit

  1. L Heleen Caro,
  2. Anat Ohali,
  3. Phillip Gorden and
  4. Elaine Collier
  1. Diabetes Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health Bethesda, Maryland
  1. Address correspondence and reprint requests to Dr. Elaine Collier, National Institute of Diabetes, Digestive, and Kidney Diseases, Solar Building, Room 4 A20, Bethesda, MD 20892.
Diabetes 1994 Feb; 43(2): 240-246. https://doi.org/10.2337/diab.43.2.240
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The insulin receptor is synthesized as a single chain of 190 kiloDaltons, which is processed to disulfide-linked mature α- and β-subunits, containing N- and O-linked oligosaccharides and fatty acids. Previously (Collier E, Carpentier J-L, Beitz L, Caro LHP, Taylor SI, Gorden P: Biochemistry 32:7818–23, 1993), site directed mutagenesis of the asparagine in the first four sites of N-linked glycosylation to glutamine resulted in a receptor that was retained in the endoplasmic reticulum and not processed past the proreceptor form. In this study, mutation of these sites individually and in various combinations is studied. Mutation in the first or second glycosylation site does not significantly impair processing of the receptor; the receptor is found on the cell surface and binds insulin normally. If both the first and second sites are mutated, a significant reduction occurs in the amount of receptor found on the cell surface and in insulin binding. There is some processing of the receptor in cells expressing this mutant compared with the four-part mutant. If only the third and fourth sites are mutated, processing is impaired < in the mutant with the first and second sites mutated. However, the amount of receptor found on the cell surface is < in the mutant of only the first or only the second site. In all of these glycosylation mutants, the amount of receptor on the cell surface correlates with the level of 125I-labeled insulin binding on the cell surface. N-linked glycosylation of the NH2-terksminal of the α-subunit of the insulin receptor is necessary for normal processing and cell surface expression of the insulin receptor but not for the function of the receptor. Specific sites of glycosylation and the number of sites glycosylated both determine the amount of receptor processed.

  • Received June 9, 1993.
  • Revision received September 9, 1993.
  • Accepted September 9, 1993.
  • Copyright © 1994 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

February 1994, 43(2)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mutational Analysis of the NH2-Terminal Glycosylation Sites of the Insulin Receptor α-subunit
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Mutational Analysis of the NH2-Terminal Glycosylation Sites of the Insulin Receptor α-subunit
L Heleen Caro, Anat Ohali, Phillip Gorden, Elaine Collier
Diabetes Feb 1994, 43 (2) 240-246; DOI: 10.2337/diab.43.2.240

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Mutational Analysis of the NH2-Terminal Glycosylation Sites of the Insulin Receptor α-subunit
L Heleen Caro, Anat Ohali, Phillip Gorden, Elaine Collier
Diabetes Feb 1994, 43 (2) 240-246; DOI: 10.2337/diab.43.2.240
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • In Situ Characterization of Nonmitochondrial Ca2+ Stores in Individual Pancreatic β-Cells
  • Gestational Diabetes: Antepartum Characteristics That Predict Postpartum Glucose Intolerance and Type 2 Diabetes in Latino Women
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.