Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Glucose-Regulated Translational Control of Proinsulin Biosynthesis With That of the Proinsulin Endopeptidases PG2 and PC3 in the Insulin-Producing MIN6 Cell Line

  1. Robert H Skelly,
  2. George T Schuppin,
  3. Hisamitsu Ishihara,
  4. Yoshitomo Oka and
  5. Christopher J Rhodes
  1. E.P. Joslin Research Laboratory, Joslin Diabetes Center, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts
  2. Department of Internal Medicine, Faculty of Medicine, University of Tokyo Tokyo, Japan
  1. Address correspondence and reprint requests to Dr. Christopher J. Rhodes, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215
Diabetes 1996 Jan; 45(1): 37-43. https://doi.org/10.2337/diab.45.1.37
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

In the short term (< 2 h), proinsulin biosynthesis is predominately glucose regulated at the translational level; however, the details at the molecular level behind this mechanism are not well defined. One of the major hindrances for gaining a better understanding of the proinsulin biosynthetic mechanism has been a lack of an abundant source of β-cells that express a phenotype of regulated proinsulin biosynthesis in the appropriate 2.8–16.7 mmol/l glucose range as defined in normal pancreatic islets. In this study, we demonstrate that in the MIN6 cell line, specific glucose-regulated translational control of proinsulin biosynthesis is present in the appropriate glucose concentration range. In addition to that of proinsulin, the biosynthesis of the two proinsulin conversion endopeptidases, PC2 and PC3, was coordinately glucose regulated in MIN6 cells, whereas that of the exopeptidase, carboxypeptidase H, was unaffected by glucose. Proinsulin, PC2 and PC3 biosynthesis was specifically stimulated over that of total MIN6 cell protein synthesis above a threshold of 4 mmol/l glucose that reached a maximum rate between 8 and 10 mmol/l glucose. Glucose-induced proinsulin, PC2, and PC3 biosynthesis was rapid (occurring after a 20-min lag period but reaching a maximum by 60 min), unaffected by the presence of actinomycin D; and in parallel experiments, stimulatory glucose concentrations did not alter MIN6 cell total preproinsulin, PC2, or PC3 mRNA levels. Thus, short-term (< 2 h) glucose stimulation of proinsulin, PC2 and PC3 biosynthesis in MIN6 cells, like that in isolated islets, was mediated at the translational level. Intracellular signals for mediating glucose-stimulated proinsulin PC2 and PC3 biosynthesis translation in MIN6 cells also appeared to be similar to those in pancreatic islets, requiring glucose metabolism and a supporting role for protein kinase A. However, protein kinase C or a Ca2+-dependent protein kinase did not appear to be required for glucose-regulated proinsulin biosynthesis in MIN6 cells, as in islets. MIN6 cells are the first β-cell line that indicate glucose-regulated proinsulin biosynthesis translation essentially identical to that in differentiated islet β-cells and will be an important experimental model to better define the mechanism of proinsulin biosynthesis in detail.

  • Received June 27, 1995.
  • Received August 7, 1995.
  • Accepted August 7, 1995.
  • Copyright © 1996 by the American Diabetes Association

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this Issue

January 1996, 45(1)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Glucose-Regulated Translational Control of Proinsulin Biosynthesis With That of the Proinsulin Endopeptidases PG2 and PC3 in the Insulin-Producing MIN6 Cell Line
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Glucose-Regulated Translational Control of Proinsulin Biosynthesis With That of the Proinsulin Endopeptidases PG2 and PC3 in the Insulin-Producing MIN6 Cell Line
Robert H Skelly, George T Schuppin, Hisamitsu Ishihara, Yoshitomo Oka, Christopher J Rhodes
Diabetes Jan 1996, 45 (1) 37-43; DOI: 10.2337/diab.45.1.37

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Glucose-Regulated Translational Control of Proinsulin Biosynthesis With That of the Proinsulin Endopeptidases PG2 and PC3 in the Insulin-Producing MIN6 Cell Line
Robert H Skelly, George T Schuppin, Hisamitsu Ishihara, Yoshitomo Oka, Christopher J Rhodes
Diabetes Jan 1996, 45 (1) 37-43; DOI: 10.2337/diab.45.1.37
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Altered Activities of Transcription Factors and Their Related Gene Expression in Cardiac Tissues of Diabetic Rats
  • Insulin Receptor Signaling in the β-Cell Influences Insulin Gene Expression and Insulin Content: Evidence for Autocrine β-Cell Regulation
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.