Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Banting Lecture 1995

A Lesson in Metabolic Regulation Inspired by the Glucokinase Glucose Sensor Paradigm

  1. Franz M Matschinsky
  1. Department of Biochemistry and Biophysics and Diabetes Research Center of the University of Pennsylvania Philadelphia, Pennsylvania
  1. Address correspondence and reprint requests to Dr. Franz M. Matschinsky, Diabetes Research Center, 501 Stemmler Hall, 36th & Hamilton Walk, Philadelphia, PA 19104-6015.
Diabetes 1996 Feb; 45(2): 223-241. https://doi.org/10.2337/diab.45.2.223
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Special features of glucose metabolism in pancreatic β-cells are central to an understanding of the physiological role of these cells in glucose homeostasis. Several of these characteristics are emphasized: a high-capacity system for glucose transport; glucose phosphorylation by the high-Km glucokinase (GK), which is rate-limiting for glucose metabolism and determines physiologically the glucose dependency curves of many processes in β-cell intermediary and energy metabolism and of insulin release and is therefore viewed as glucose sensor; remarkably low activity of lactate dehydrogenase and the presence of effective hydrogen shuttles to allow virtually quantitative oxidation of glycolytic NADH; the near absence of glycogen and fatty acid synthesis and of gluconeogenesis, such that intermediary metabolism is primarily catabolic; a crucial role of mitochondrial processes, including the citric acid cycle, electron transport, and oxidative phosphorylation with FoF1 ATPase governing the glucose-dependent increase of the ATP mass-action ratio; a Ca2+-independent glucose-induced respiratory burst and increased ATP production in β-cells as striking manifestations of crucial mitochondrial reactions; control of the membrane potential by the mass-action ratio of ATP and voltage-dependent Ca2+ influx as signal for insulin release; accumulation of malonyl-CoA, acyl-CoA, and diacylglycerol as essential or auxiliary metabolic coupling factors; and amplification of the adenine nucleotide, lipid-related, and Ca2+ signals to recruit many auxiliary processes to maximize insulin biosynthesis and release. The biochemical design also suggests certain candidate diabetes genes related to fuel metabolism: low-activity and low-stability GK mutants that explain in part the maturity-onset diabetes of the young (MODY) phenotype in humans and mitochondrial DNA mutations of FoF1 ATPase components thought to cause late-onset diabetes in BHEcdb rats. These two examples are chosen to illustrate that metabolic reactions with high control strength participating in β-cell energy metabolism and generating coupling factors and intracellular signals are steps with great susceptibility to genetic, environmental, and pharmacological influences. Glucose metabolism of β-cells also controls, in addition to insulin secretion and insulin biosynthesis, an adaptive response to excessive fuel loads and may increase the β-cell mass by hypertrophy, hyperplasia, and neogenesis. It is probable that this adaptive response is compromised in diabetes because of the GK or ATPase mutants that are highlighted here. A comprehensive knowledge of β-cell intermediary and energy metabolism is therefore the foundation for understanding the role of these cells in fuel homeostasis and in the pathogenesis of the most prevalent metabolic disease, diabetes.

  • Received September 15, 1995.
  • Accepted September 28, 1995.
  • Copyright © 1996 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

February 1996, 45(2)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Lesson in Metabolic Regulation Inspired by the Glucokinase Glucose Sensor Paradigm
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A Lesson in Metabolic Regulation Inspired by the Glucokinase Glucose Sensor Paradigm
Franz M Matschinsky
Diabetes Feb 1996, 45 (2) 223-241; DOI: 10.2337/diab.45.2.223

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

A Lesson in Metabolic Regulation Inspired by the Glucokinase Glucose Sensor Paradigm
Franz M Matschinsky
Diabetes Feb 1996, 45 (2) 223-241; DOI: 10.2337/diab.45.2.223
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.