Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Plasma Free Fatty Acids Decrease Insulin-Stimulated Skeletal Muscle Glucose Uptake by Suppressing Glycolysis in Conscious Rats

  1. Jason K Kim,
  2. Jae K Wi and
  3. Jang H Youn
  1. Department of Physiology and Biophysics, University of Southern California School of Medicine Los Angeles, California
  1. Address correspondence and reprint requests to Dr. Jang H. Youn, Department of Physiology and Biophysics, University of Southern California School of Medicine, 1333 San Pablo Ave., MMR 626, Los Angeles, CA 90033.
Diabetes 1996 Apr; 45(4): 446-453. https://doi.org/10.2337/diab.45.4.446
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The effects of elevated plasma free fatty acid (FFA) levels on insulin-stimulated whole-body and skeletal muscle glucose transport, glucose uptake, glycolysis, and glycogen synthesis were studied in conscious rats during hyperinsulinemic-euglycemic clamps with (n = 26) or without (n = 23) Intralipid and heparin infusion. Whole-body and skeletal muscle glucose uptake, glycolysis, and glycogen synthesis were estimated using d-[3-3H]glucose and 2-[14C]deoxyglucose (study 1), and glucose transport activity was assessed by analyzing plasma kinetics of l-[14C]glucose and 3-O-[3H]-methylglucose (study 2). Plasma FFA levels decreased during the clamps without intralipid but increased above basal during the clamps with Intralipid infusion (P < 0.01 for both). Elevated plasma FFA levels decreased insulin-stimulated whole-body glucose uptake by ∼ 15% and ∼ 20% during physiological and maximal insulin clamps, respectively (P < 0.01). Similarly, insulin-stimulated glucose uptake was also decreased in individual skeletal muscles with Intralipid infusion (P < 0.05). The most profound effect of elevated plasma FFA levels was a 30–50% suppression of insulin-stimulated glycolysis in whole body and individual skeletal muscles in both clamps. In contrast, physiological insulin-stimulated glycogen synthesis was increased with elevated plasma FFA levels in whole body and individual skeletal muscles (P < 0.05). Glucose-6-phosphate (G-6-P) levels were increased in soleus and extensor digitorum longus (EDL) muscles with Intralipid infusion in both clamps (P < 0.05). Intralipid infusion did not alter the time profiles of plasma l-glucose and 3-O-methylglucose after an intravenous injection during maximal insulin clamps, and compartmental analysis indicated no significant effect of elevated FFA levels on glucose transport activity in insulin-sensitive tissues (P > 0.05). Thus, elevated plasma FFA decreased insulin-stimulated glucose uptake in skeletal muscle by suppressing glycolysis and increasing G-6-P levels. These findings suggest that the classic glucose-fatty acid cycle was the predominant mechanism underlying the inhibitory effect of FFA on skeletal muscle glucose uptake.

  • Received April 5, 1995.
  • Revision received November 16, 1995.
  • Accepted November 16, 1995.
  • Copyright © 1996 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

April 1996, 45(4)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Plasma Free Fatty Acids Decrease Insulin-Stimulated Skeletal Muscle Glucose Uptake by Suppressing Glycolysis in Conscious Rats
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Plasma Free Fatty Acids Decrease Insulin-Stimulated Skeletal Muscle Glucose Uptake by Suppressing Glycolysis in Conscious Rats
Jason K Kim, Jae K Wi, Jang H Youn
Diabetes Apr 1996, 45 (4) 446-453; DOI: 10.2337/diab.45.4.446

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Plasma Free Fatty Acids Decrease Insulin-Stimulated Skeletal Muscle Glucose Uptake by Suppressing Glycolysis in Conscious Rats
Jason K Kim, Jae K Wi, Jang H Youn
Diabetes Apr 1996, 45 (4) 446-453; DOI: 10.2337/diab.45.4.446
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Insulin Receptor Signaling in the β-Cell Influences Insulin Gene Expression and Insulin Content: Evidence for Autocrine β-Cell Regulation
  • Peroxisome Proliferator-Activated Receptor-γ Agonist, Rosiglitazone, Protects Against Nephropathy and Pancreatic Islet Abnormalities in Zucker Fatty Rats
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.