Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

A Fatty Acid—Induced Decrease in Pyruvate Dehydrogenase Activity Is an Important Determinant of β-Cell Dysfunction in the Obese Diabetic db/db Mouse

  1. Yun-Ping Zhou,
  2. Per-Olof Berggren and
  3. Valdemar Grill
  1. Department of Molecular Medicine, The Endocrine and Diabetes Unit, Karolinska Hospital and Institute S-171 76 Stockholm, Sweden
  2. Endocrine Section, Department of Medicine, University of Trondheim Trondheim, Norway
  1. Address correspondence and reprint requests to Dr. Valdemar Grill, Department of Molecular Medicine, The Endocrine and Diabetes Unit, Karolinska Hospital, S-171 76, Stockholm, Sweden.
Diabetes 1996 May; 45(5): 580-586. https://doi.org/10.2337/diab.45.5.580
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We studied the effects of fatty acid oxidation on insulin secretion of db/db mice and underlying molecular mechanisms of these effects. At 2–3 months of age, db/db mice were markedly obese, hyperglycemic, and hyperinsulinemic. Serum free fatty acid (FFA) levels were increased in 2-month-old (1.5 ± 0.1 vs. 1.1 ± 0.1 mmol/l, P < 0.05) and 3-month-old (1.9 ± 0.1 vs. 1.2 ± 0.1 mmol/l, P < 0.01) mice compared with the age and sex-matched db/+ mice serving as controls. Glucose-induced insulin release from db/db islets was markedly decreased compared with that from db/+ islets and was specifically ameliorated (by 54% in 2-month-old and 38% in 3-month-old mice) by exposure to a carnitine palmitoyltransferase I inhibitor, etomoxir (1 μmol/l). Etomoxir failed to affect the insulin response to α-ketoisocaproate. The effect of etomoxir on glucose-induced insulin release was lost after culturing db/db islets in RPMI medium containing 22 mmol/l glucose but no fatty acid. Culture of db/+ islets with 0.125 mmol/l palmitate led to a decrease in glucose-induced insulin secretion, which was partially reversible by etomoxir. Both islet glucose oxidation and the ratio of glucose oxidation to utilization were decreased in db/db islets. Etomoxir significantly enhanced glucose oxidation by 60% and also the ratio of oxidation to glucose utilization (from 27 ± 2.5 to 37 ±3.0%, P < 0.05). Pyruvate dehydrogenase (PDH) activity was decreased in islets of db/db mice (75 ±4.2 vs. 91 ± 2.9 nU/ng DNA, P < 0.01), whereas PDH kinase activity was increased (rate of PDH inactivation −0.25 ± 0.02 vs. −0.11 ± 0.02/min, P < 0.01). These abnormalities were partly but not wholly reversed by a 2-h preexposure to etomoxir. In conclusion, elevated FFA levels in the db/db mouse diminish glucose-induced insulin secretion by a glucose–fatty acid cycle in which fatty acid oxidation inhibits glucose oxidation by decreasing PDH activity and increasing PDH kinase activities.

  • Received August 7, 1995.
  • Revision received December 14, 1995.
  • Accepted December 14, 1995.
  • Copyright © 1996 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

May 1996, 45(5)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Fatty Acid—Induced Decrease in Pyruvate Dehydrogenase Activity Is an Important Determinant of β-Cell Dysfunction in the Obese Diabetic db/db Mouse
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A Fatty Acid—Induced Decrease in Pyruvate Dehydrogenase Activity Is an Important Determinant of β-Cell Dysfunction in the Obese Diabetic db/db Mouse
Yun-Ping Zhou, Per-Olof Berggren, Valdemar Grill
Diabetes May 1996, 45 (5) 580-586; DOI: 10.2337/diab.45.5.580

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

A Fatty Acid—Induced Decrease in Pyruvate Dehydrogenase Activity Is an Important Determinant of β-Cell Dysfunction in the Obese Diabetic db/db Mouse
Yun-Ping Zhou, Per-Olof Berggren, Valdemar Grill
Diabetes May 1996, 45 (5) 580-586; DOI: 10.2337/diab.45.5.580
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Fibronectin Fragments Modulate Human Retinal Capillary Cell Proliferation and Migration
  • Overexpression of Glycogen Phosphorylase Increases GLUT4 Expression and Glucose Transport in Cultured Skeletal Human Muscle
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.