Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Subcutaneous Abdominal Fat and Thigh Muscle Composition Predict Insulin Sensitivity Independently of Visceral Fat

  1. Bret H Goodpaster,
  2. F Leland Thaete,
  3. Jean-Aimé Simoneau and
  4. David E Kelley
  1. Departments of Medicine and Radiology, University of Pittsburgh Pittsburgh, Pennsylvania
  2. Physical Activity Sciences Laboratory, Laval University Ste-Foy, Quebec, Canada
Diabetes 1997 Oct; 46(10): 1579-1585. https://doi.org/10.2337/diacare.46.10.1579
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Whether visceral adipose tissue has a uniquely powerful association with insulin resistance or whether subcutaneous abdominal fat shares this link has generated controversy in the area of body composition and insulin sensitivity. An additional issue is the potential role of fat deposition within skeletal muscle and the relationship with insulin resistance. To address these matters, the current study was undertaken to measure body composition, aerobic fitness, and insulin sensitivity within a cohort of sedentary healthy men (n = 26) and women (n = 28). The subjects, who ranged from lean to obese (BMI 19.6-41.0 kg/m2), underwent dual energy X-ray absorptiometry (DEXA) to measure fat-free mass (FFM) and fat mass (FM), computed tomography to measure cross-sectional abdominal subcutaneous and visceral adipose tissue, and computed tomography (CT) of mid-thigh to measure muscle cross-sectional area, muscle attenuation, and subcutaneous fat. Insulin sensitivity was measured using the glucose clamp technique (40 mU · m∼2 · min−1), in conjunction with [3-3H]glucose isotope dilution. Maximal aerobic power (Vo2max) was determined using an incremental cycling test. Insulin-stimulated glucose disposal (Rd) ranged from 3.03 to 16.83 mg · min−1· kg−1 FFM. Rd was negatively correlated with FM (r = -0.58), visceral fat (r = -0.52), subcutaneous abdominal fat (r = -0.61), and thigh fat (r = -0.38) and positively correlated with muscle attenuation (r = 0.48) and Vo2max (r = 0.26, P < 0.05). In addition to manifesting the strongest simple correlation with insulin sensitivity, in stepwise multiple regression, subcutaneous abdominal fat retained significance after adjusting for visceral fat, while the converse was not found. Muscle attenuation contributed independent significance to multiple regression models of body composition and insulin sensitivity, and in analysis of obese subjects, muscle attenuation was the strongest single correlate of insulin resistance. In summary, as a component of central adiposity, subcutaneous abdominal fat has as strong an association with insulin resistance as visceral fat, and altered muscle composition, suggestive of increased fat content, is an important independent marker of insulin resistance in obesity.

  • Received February 20, 1997.
  • Revision received June 4, 1997.
  • Accepted June 4, 1997.
  • Copyright © 1997 by the American Diabetes Association

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this Issue

October 1997, 46(10)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Subcutaneous Abdominal Fat and Thigh Muscle Composition Predict Insulin Sensitivity Independently of Visceral Fat
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Subcutaneous Abdominal Fat and Thigh Muscle Composition Predict Insulin Sensitivity Independently of Visceral Fat
Bret H Goodpaster, F Leland Thaete, Jean-Aimé Simoneau, David E Kelley
Diabetes Oct 1997, 46 (10) 1579-1585; DOI: 10.2337/diacare.46.10.1579

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Subcutaneous Abdominal Fat and Thigh Muscle Composition Predict Insulin Sensitivity Independently of Visceral Fat
Bret H Goodpaster, F Leland Thaete, Jean-Aimé Simoneau, David E Kelley
Diabetes Oct 1997, 46 (10) 1579-1585; DOI: 10.2337/diacare.46.10.1579
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Fibroblast Growth Factor 2 Promotes Pancreatic Epithelial Cell Proliferation Via Functional Fibroblast Growth Factor Receptors During Embryonic Life
  • Altered Activities of Transcription Factors and Their Related Gene Expression in Cardiac Tissues of Diabetic Rats
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.