Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Mechanisms of Liver and Muscle Insulin Resistance Induced by Chronic High-Fat Feeding

  1. Nicholas D Oakes,
  2. Gregory J Cooney,
  3. Souad Camilleri,
  4. Donald J Chisholm and
  5. Edward W Kraegen
  1. Garvan Institute of Medical Research, Royal Prince Alfred Hospital, St. Vincent's Hospital Sydney, Australia
  2. Department of Endocrinology, Royal Prince Alfred Hospital Sydney, Australia
  1. Address correspondence and reprint requests to N.D. Oakes, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney NSW 2010, Australia. E-mail: n.oakes{at}garvan.unsw.edu.au.
Diabetes 1997 Nov; 46(11): 1768-1774. https://doi.org/10.2337/diab.46.11.1768
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

To elucidate cellular mechanisms of insulin resistance induced by excess dietary fat, we studied conscious chronically high-fat–fed (HFF) and control chow diet-fed rats during euglycemic-hyperinsulinemic (560 pmol/1 plasma insulin) clamps. Compared with chow diet feeding, fat feeding significantly impaired insulin action (reduced whole body glucose disposal rate, reduced skeletal muscle glucose metabolism, and decreased insulin suppressibility of hepatic glucose production [HGP]). In HFF rats, hyperinsulinemia significantly suppressed circulating free fatty acids but not the intracellular availability of fatty acid in skeletal muscle (long chain fatty acyl-CoA esters remained at 230% above control levels). In HFF animals, acute blockade of β-oxidation using etomoxir increased insulin-stimulated muscle glucose uptake, via a selective increase in the component directed to glycolysis, but did not reverse the defect in net glycogen synthesis or glycogen synthase. In clamp HFF animals, etomoxir did not significantly alter the reduced ability of insulin to suppress HGP, but induced substantial depletion of hepatic glycogen content. This implied that gluconeo-genesis was reduced by inhibition of hepatic fatty acid oxidation and that an alternative mechanism was involved in the elevated HGP in HFF rats. Evidence was then obtained suggesting that this involves a reduction in hepatic glucokinase (GK) activity and an inability of insulin to acutely lower glucose-6-phos-phatase (G-6-Pase) activity. Overall, a 76% increase in the activity ratio G-6-Pase/GK was observed, which would favor net hepatic glucose release and elevated HGP in HFF rats. Thus in the insulin-resistant HFF rat 1) acute hyperinsulinemia fails to quench elevated muscle and liver lipid availability, 2) elevated lipid oxidation opposes insulin stimulation of muscle glucose oxidation (perhaps via the glucose-fatty acid cycle) and suppression of hepatic gluconeogenesis, and 3) mechanisms of impaired insulin-stimulated glucose storage and HGP suppressibility are not dependent on concomitant lipid oxidation; in the case of HGP we provide evidence for pivotal involvement of G-6-Pase and GK in the regulation of HGP by insulin, independent of the glucose source.

  • Received January 29, 1997.
  • Revision received July 16, 1997.
  • Accepted July 16, 1997.
  • Copyright © 1997 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

November 1997, 46(11)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mechanisms of Liver and Muscle Insulin Resistance Induced by Chronic High-Fat Feeding
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Mechanisms of Liver and Muscle Insulin Resistance Induced by Chronic High-Fat Feeding
Nicholas D Oakes, Gregory J Cooney, Souad Camilleri, Donald J Chisholm, Edward W Kraegen
Diabetes Nov 1997, 46 (11) 1768-1774; DOI: 10.2337/diab.46.11.1768

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Mechanisms of Liver and Muscle Insulin Resistance Induced by Chronic High-Fat Feeding
Nicholas D Oakes, Gregory J Cooney, Souad Camilleri, Donald J Chisholm, Edward W Kraegen
Diabetes Nov 1997, 46 (11) 1768-1774; DOI: 10.2337/diab.46.11.1768
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Splenic Macrophages From the NOD Mouse Are Defective in the Ability to Present Antigen
  • NIDDM Genes in Mice: Deleterious Synergism by Both Parental Genomes Contributes to Diabetogenic Thresholds
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.