Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Diet-Induced Muscle Insulin Resistance in Rats Is Ameliorated by Acute Dietary Lipid Withdrawal or a Single Bout of Exercise: Parallel Relationship Between Insulin Stimulation of Glucose Uptake and Suppression of Long-Chain Fatty Acyl-CoA

  1. Nicholas D Oakes,
  2. Kim S Bell,
  3. Stuart M Furler,
  4. Souad Camilleri,
  5. Asish K Saha,
  6. Neil B Ruderman,
  7. Donald J Chisholm and
  8. Edward W Kraegen
  1. Garvan Institute of Medical Research, St. Vincent's Hospital Sydney, Australia
  2. Diabetes and Metabolism Unit, Boston University Medical Center Boston, Massachusetts
  1. Address correspondence and reprint requests to Dr. Nicholas D, Oakes, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney NSW 2010, Australia. E-mail: n.oakes{at}garvan.unsw.edu.au.
Diabetes 1997 Dec; 46(12): 2022-2028. https://doi.org/10.2337/diab.46.12.2022
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Chronic high-fat feeding in rats induces profound whole-body insulin resistance, mainly due to effects in oxidative skeletal muscle. The mechanisms of this reaction remain unclear, but local lipid availability has been implicated. The aim of this study was to examine the influence of three short-term physiological manipulations intended to lower muscle lipid availability on insulin sensitivity in high-fat–fed rats. Adult male Wistar rats fed a high-fat diet for 3 weeks were divided into four groups the day before the study: one group was fed the normal daily high-fat meal (FM); another group was fed an isocaloric low-fat high-glucose meal (GM); a third group was fasted overnight (NM); and a fourth group underwent a single bout of exercise (2-h swim), then were fed the normal high-fat meal (EX). In vivo insulin action was assessed using the hyperinsulinemic glucose clamp (plasma insulin 745 pmol/l, glucose 7.2 mmol/l). Prior exercise, a single low-fat meal, or fasting all significantly increased insulin-stimulated glucose utilization, estimated at either the whole-body level (P < 0.01 vs. FM) or in red quadriceps muscle (EX 18.2, GM 28.1, and NM 19.3 vs. FM 12.6 ± 1.1 μmol · 100 g−1 · min−1; P < 0.05), as well as increased insulin suppressibility of muscle total long-chain fatty acyl-CoA (LCCoA), the metabolically available form of fatty acid (EX 24.0, GM 15.5, and NM 30.6 vs. FM 45.4 nmol/g; P < 0.05). There was a strong inverse correlation between glucose uptake and LC-CoA in red quadriceps during the clamp (r = −0.7, P = 0.001). Muscle triglyceride was significantly reduced by short-term dietary lipid withdrawal (GM −22 and NM −24% vs. FM; P < 0.01), but not prior exercise. We concluded that muscle insulin resistance induced by high-fat feeding is readily ameliorated by three independent, short-term physiological manipulations. The data suggest that insulin resistance is an important factor in the elevated muscle lipid availability induced by chronic high-fat feeding.

  • Received March 18, 1997.
  • Revision received September 3, 1997.
  • Accepted September 3, 1997.
  • Copyright © 1997 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

December 1997, 46(12)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Diet-Induced Muscle Insulin Resistance in Rats Is Ameliorated by Acute Dietary Lipid Withdrawal or a Single Bout of Exercise: Parallel Relationship Between Insulin Stimulation of Glucose Uptake and Suppression of Long-Chain Fatty Acyl-CoA
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Diet-Induced Muscle Insulin Resistance in Rats Is Ameliorated by Acute Dietary Lipid Withdrawal or a Single Bout of Exercise: Parallel Relationship Between Insulin Stimulation of Glucose Uptake and Suppression of Long-Chain Fatty Acyl-CoA
Nicholas D Oakes, Kim S Bell, Stuart M Furler, Souad Camilleri, Asish K Saha, Neil B Ruderman, Donald J Chisholm, Edward W Kraegen
Diabetes Dec 1997, 46 (12) 2022-2028; DOI: 10.2337/diab.46.12.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Diet-Induced Muscle Insulin Resistance in Rats Is Ameliorated by Acute Dietary Lipid Withdrawal or a Single Bout of Exercise: Parallel Relationship Between Insulin Stimulation of Glucose Uptake and Suppression of Long-Chain Fatty Acyl-CoA
Nicholas D Oakes, Kim S Bell, Stuart M Furler, Souad Camilleri, Asish K Saha, Neil B Ruderman, Donald J Chisholm, Edward W Kraegen
Diabetes Dec 1997, 46 (12) 2022-2028; DOI: 10.2337/diab.46.12.2022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • In Situ Characterization of Nonmitochondrial Ca2+ Stores in Individual Pancreatic β-Cells
  • Gestational Diabetes: Antepartum Characteristics That Predict Postpartum Glucose Intolerance and Type 2 Diabetes in Latino Women
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.