Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Differential Regulation of the p80 Tumor Necrosis Factor Receptor in Human Obesity and Insulin Resistance

  1. Gökhan S Hotamisligil,
  2. Peter Arner,
  3. Richard L Atkinson and
  4. Bruce M Spiegelman
  1. Division of Biological Sciences and Department of Nutrition, Harvard School of Public Health Boston, Massachusetts
  2. Dana Farber Cancer Institute and Department of Cell Biology, Harvard Medical School Boston, Massachusetts
  3. Department of Medicine, Karolinska Institute, Huddinge University Hospital Huddinge, Sweden
  4. Department of Medicine, Medical College of Wisconsin Madison, Wisconsin
  1. Address correspondence and reprint requests to Dr. Gökhan S. Hotamisligil, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115. ghotamis{at}hsph.harvard.edu.
Diabetes 1997 Mar; 46(3): 451-455. https://doi.org/10.2337/diab.46.3.451
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Previous studies have shown that tumor necrosis factor (TNF)-α production from adipose tissue is elevated in rodent and human obesity and plays an important role in insulin resistance in experimental animal models. In this study, we examined the adipose expression of both TNF receptors (TNFR1 and TNFR2) in human obesity and demonstrated that obese female subjects express approximately twofold more TNFR2 mRNA in fat tissue and approximately sixfold more soluble TNFR2 in circulation relative to lean control subjects. In contrast, TNFR1 expression and protein levels were similar in these subjects. TNFR2 expression levels in adipose tissue were strongly correlated with BMI (r = 0.65, P < 0.001) and level of hyperinsulinemia (P < 0.001), an indirect measure of insulin resistance, as well as level of TNF-α mRNA expression in fat tissue (r = 0.56, P < 0.001). These results suggest that TNFR2 might play a role in human obesity by modulating the actions of TNF-α.

  • Received August 7, 1996.
  • Revision received October 30, 1996.
  • Accepted October 30, 1996.
  • Copyright © 1997 by the American Diabetes Association

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this Issue

March 1997, 46(3)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Differential Regulation of the p80 Tumor Necrosis Factor Receptor in Human Obesity and Insulin Resistance
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Differential Regulation of the p80 Tumor Necrosis Factor Receptor in Human Obesity and Insulin Resistance
Gökhan S Hotamisligil, Peter Arner, Richard L Atkinson, Bruce M Spiegelman
Diabetes Mar 1997, 46 (3) 451-455; DOI: 10.2337/diab.46.3.451

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Differential Regulation of the p80 Tumor Necrosis Factor Receptor in Human Obesity and Insulin Resistance
Gökhan S Hotamisligil, Peter Arner, Richard L Atkinson, Bruce M Spiegelman
Diabetes Mar 1997, 46 (3) 451-455; DOI: 10.2337/diab.46.3.451
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Cloning of the Promoters for the β-Cell ATP-Sensitive K-Channel Subunits Kir6.2 and SUR1
  • Interleukin-4 Deficiency Does Not Exacerbate Disease in NOD Mice
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.