Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcast
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
Advertisement
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcast
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Rapid Publications

Insulin Receptor Substrate-1 Phosphorylation and Phosphatidylinositol 3-Kinase Activity in Skeletal Muscle From NIDDM Subjects After In Vivo Insulin Stimulation

  1. Marie Björnholm,
  2. Yuichi Kawano,
  3. Mikael Lehtihet and
  4. Juleen R Zierath
  1. Department of Clinical Physiology, Karolinska Hospital Stockholm, Sweden
  1. Address correspondence and reprint requests to Dr. Juleen R. Zierath, Department of Clinical Physiology, Karolinska Hospital, S-171 76, Stockholm, Sweden. jrz{at}klinfys.ks.se.
Diabetes 1997 Mar; 46(3): 524-527. https://doi.org/10.2337/diab.46.3.524
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We examined the effect of physiological hyperinsulinemia on insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity in skeletal muscle from six lean–to–moderately obese NIDDM patients and six healthy subjects. A rise in serum insulin levels from ∼60 to ∼650 pmol/l increased IRS-1 tyrosine phosphorylation sixfold over basal levels in control muscle (P < 0.01), whereas no significant increase was noted in NIDDM muscle. The reduced IRS-1 phosphorylation in the NIDDM muscle was not related to changes in IRS-1 protein content, since IRS-1 protein expression was similar between control and NIDDM subjects (16.0 ± 1.7 vs. 22.9 ± 4.0 arbitrary units/mg protein for control and NIDDM, respectively; NS). Physiological hyperinsulinemia increased PI 3-kinase activity in control muscle twofold (P < 0.01), whereas no increase in insulin-stimulated PI 3-kinase activity was noted in the NIDDM muscle. Furthermore, in vitro insulin-stimulated (600 pmol/l) 3-O-methylglucose transport was 40% lower in isolated muscle from NIDDM subjects (P < 0.05). The present findings couple both reduced insulin-stimulated IRS-1 tyrosine phosphorylation and PI 3-kinase activity to the impaired insulin-stimulated glucose transport in skeletal muscle from lean–to–moderately obese NIDDM subjects.

  • Received October 31, 1996.
  • Revision received December 19, 1996.
  • Accepted December 19, 1996.
  • Copyright © 1997 by the American Diabetes Association
PreviousNext
Back to top
Advertisement

In this Issue

March 1997, 46(3)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Insulin Receptor Substrate-1 Phosphorylation and Phosphatidylinositol 3-Kinase Activity in Skeletal Muscle From NIDDM Subjects After In Vivo Insulin Stimulation
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
Citation Tools
Insulin Receptor Substrate-1 Phosphorylation and Phosphatidylinositol 3-Kinase Activity in Skeletal Muscle From NIDDM Subjects After In Vivo Insulin Stimulation
Marie Björnholm, Yuichi Kawano, Mikael Lehtihet, Juleen R Zierath
Diabetes Mar 1997, 46 (3) 524-527; DOI: 10.2337/diab.46.3.524

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Insulin Receptor Substrate-1 Phosphorylation and Phosphatidylinositol 3-Kinase Activity in Skeletal Muscle From NIDDM Subjects After In Vivo Insulin Stimulation
Marie Björnholm, Yuichi Kawano, Mikael Lehtihet, Juleen R Zierath
Diabetes Mar 1997, 46 (3) 524-527; DOI: 10.2337/diab.46.3.524
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Islet-Derived Fibroblast-Like Cells Are Not Derived via Epithelial-Mesenchymal Transition From Pdx-1 or Insulin-Positive Cells
  • Retinoic Acid Induces Pdx1-Positive Endoderm in Differentiating Mouse Embryonic Stem Cells
  • Antigen-Specific FoxP3-Transduced T-Cells Can Control Established Type 1 Diabetes
Show more Rapid Publications

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • For Advertisers
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Scientific Sessions Abstracts
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org
Advertisement

© 2019 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.