Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Troglitazone Reduces Contraction by Inhibition of Vascular Smooth Muscle Cell Ca2+ Currents and Not Endothelial Nitric Oxide Production

  1. Jianben Song,
  2. Mary F Walsh,
  3. Robert Igwe,
  4. Jeffrey L Ram,
  5. Mohamad Barazi,
  6. Ligia J Dominguez and
  7. James R Sowers
  1. Departments of Medicine and Physiology, Wayne State University, and Veterans Affairs Medical Center Detroit, Michigan
  1. Address correspondence and reprint requests to Dr. James R. Sowers, Director, Division of Endocrinology, Metabolism and Hypertension, Wayne State University School of Medicine, 4201 St. Antoine, UHC-4H, Detroit, MI 48201. sowers{at}oncgate.roc.wayne.edu.
Diabetes 1997 Apr; 46(4): 659-664. https://doi.org/10.2337/diab.46.4.659
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The insulin-sensitizing compound troglitazone has evolved into a promising therapeutic agent for type II diabetes. It improves insulin sensitivity and lipoprotein metabolic profiles and lowers blood pressure in humans and rodents. Because troglitazone has insulinlike effects on a number of tissues, we hypothesized that it may reduce vascular tone through stimulation of endothelial-derived nitric oxide (NO) production or by diminution of vascular smooth muscle cell (VSMC) intracellular calcium ([Ca2+]i). Our results show that troglitazone decreases norepinephrine-induced contractile responses in the rat tail artery, an effect not reversed by the NO inhibitor L-nitroarginine methyl ester (L-NAME). In contrast, troglitazone significantly inhibited L-type Ca2+ currents in freshly dissociated rat tail artery and aortic VSMCs and in cultured VSMCs. The data suggest that troglitazone attenuates vascular contractility via a mechanism involving VSMC [Ca2+]i but independent from endothelial generation of NO. Because insulin has been shown to affect vascular tone by both of these mechanisms, troglitazone only partially mimics insulin action in this tissue.

  • Received June 28, 1996.
  • Revision received November 7, 1996.
  • Accepted November 7, 1996.
  • Copyright © 1997 by the American Diabetes Association

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this Issue

April 1997, 46(4)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Troglitazone Reduces Contraction by Inhibition of Vascular Smooth Muscle Cell Ca2+ Currents and Not Endothelial Nitric Oxide Production
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Troglitazone Reduces Contraction by Inhibition of Vascular Smooth Muscle Cell Ca2+ Currents and Not Endothelial Nitric Oxide Production
Jianben Song, Mary F Walsh, Robert Igwe, Jeffrey L Ram, Mohamad Barazi, Ligia J Dominguez, James R Sowers
Diabetes Apr 1997, 46 (4) 659-664; DOI: 10.2337/diab.46.4.659

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Troglitazone Reduces Contraction by Inhibition of Vascular Smooth Muscle Cell Ca2+ Currents and Not Endothelial Nitric Oxide Production
Jianben Song, Mary F Walsh, Robert Igwe, Jeffrey L Ram, Mohamad Barazi, Ligia J Dominguez, James R Sowers
Diabetes Apr 1997, 46 (4) 659-664; DOI: 10.2337/diab.46.4.659
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • In Situ Characterization of Nonmitochondrial Ca2+ Stores in Individual Pancreatic β-Cells
  • Gestational Diabetes: Antepartum Characteristics That Predict Postpartum Glucose Intolerance and Type 2 Diabetes in Latino Women
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.