Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Importance of Cerebral Blood Flow to the Recognition of and Physiological Responses to Hypoglycemia

  1. Thomas Matthew,
  2. Robert S Sherwin,
  3. June Murphy and
  4. David Kerr
  1. Metabolism Unit, Royal Bournemouth Hospital, Castle Lane East Bournemouth, England
  2. Division of Endocrinology, Yale University School of Medicine New Haven, Connecticut
  1. Address correspondence and reprint requests to Dr. David Kerr, Metabolism Unit, Royal Bournemouth Hospital, Castle Lane East, BH7 7DW Bournemouth, U.K.
Diabetes 1997 May; 46(5): 829-833. https://doi.org/10.2337/diab.46.5.829
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

During hypoglycemia, cerebral blood flow (CBF) does not increase significantly until peripheral glucose levels are very low (2.0 nmol/l), that is, well below the blood glucose threshold for impairment of cognitive function (3.0 nmol/l). Because increased rates of cerebral blood flow will increase glucose transport, a failure of flow to rise earlier, before brain function is threatened, might be considered maladaptive. To examine the influence of inducing an earlier rise in CBF during hypoglycemia, eight healthy volunteers participated in three studies using a randomized, placebo-controlled design. In all three studies, a hyperinsulinemic (60 mU · m2 · min−1) clamp was used to maintain blood glucose levels at 4.5 nmol/l for 60 min. Thereafter, for EUGACZ, blood glucose was maintained at 4.5 nmol/l from 60 to 170 min and at 90 min from the start of this study, and 1-g acetazolamide i.v. was given to induce an early rise in CBF; for HYPO-ACZ, glucose was lowered over 20 min to 2.8 mmol/l and kept at that level for 90 min, and acetazolamide was given 90 min from the start of this study; and for HYPO-CON, glucose was treated as in HYPO-ACZ, and matching placebo was given in place of acetazolamide. Injection of acetazolamide was associated with a 30% rise in right (95% CI24–34%) and left (20–32%) middle cerebral artery velocity (an index of CBF) during euglycemia without any change in hypoglycemia awareness or counterregulatory hormone levels. When glucose was lowered to 2.8 nmol/l, acetazolamide caused a similar rise in middle cerebral artery velocity in the HYPO-ACZ study. However, all subjects were less “aware” of hypoglycemia, had fewer adrenergic symptoms (sweating, palpitations, tremors; all P < 0.05), and had lower plasma epinephrine levels (1,026 vs. 1,790 pmol/l; –764 [437 to 1,097] pmol/l, point estimate of difference [95% CI]; P < 0.001), compared with the HYPO-CON study, whereas levels of other counterregulatory hormones and norepinephrine were similar. Cognitive function (latency of the P300 evoked response) was unaffected by increasing CBF. In conclusion, enhanced rates of cerebral blood flow at the onset of systemic hypoglycemia are associated with diminished perception of low blood glucose levels and attenuation of the epinephrine counterregulatory response. These findings suggest that augmenting cerebral blood flow leads to an enhanced rate of substrate delivery to the central nervous system.

  • Received September 3, 1996.
  • Revision received January 7, 1997.
  • Accepted January 7, 1997.
  • Copyright © 1997 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

May 1997, 46(5)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Importance of Cerebral Blood Flow to the Recognition of and Physiological Responses to Hypoglycemia
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Importance of Cerebral Blood Flow to the Recognition of and Physiological Responses to Hypoglycemia
Thomas Matthew, Robert S Sherwin, June Murphy, David Kerr
Diabetes May 1997, 46 (5) 829-833; DOI: 10.2337/diab.46.5.829

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Importance of Cerebral Blood Flow to the Recognition of and Physiological Responses to Hypoglycemia
Thomas Matthew, Robert S Sherwin, June Murphy, David Kerr
Diabetes May 1997, 46 (5) 829-833; DOI: 10.2337/diab.46.5.829
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Insulin Receptor Signaling in the β-Cell Influences Insulin Gene Expression and Insulin Content: Evidence for Autocrine β-Cell Regulation
  • Peroxisome Proliferator-Activated Receptor-γ Agonist, Rosiglitazone, Protects Against Nephropathy and Pancreatic Islet Abnormalities in Zucker Fatty Rats
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.