Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Rapid Publications

Progression of Nephropathy in Spontaneous Diabetic Rats Is Prevented by OPB-9195, a Novel Inhibitor of Advanced Glycation

  1. Sakurako Nakamura,
  2. Zenji Makita,
  3. Shintaro Ishikawa,
  4. Koichi Yasumura,
  5. Wataru Fujii,
  6. Katsuyuki Yanagisawa,
  7. Tetsuya Kawata and
  8. Takao Koike
  1. Department of Medicine II, Hokkaido University School of Medicine Sapporo, Japan
  2. Fujii Memorial Research Institute Otsuka Pharmaceutical, Ohtsu, Japan
  1. Address correspondence to Zenji Makita, MD, PhD, Department of Medicine II, Hokkaido University School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060, Japan.
Diabetes 1997 May; 46(5): 895-899. https://doi.org/10.2337/diab.46.5.895
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Levels of tissue advanced glycation end products (AGEs) that result from nonenzymatic reactions of glucose and proteins are high in both diabetic and aging people. Irreversible AGE formation is based on increases in AGE-derived protein-to-protein cross-linking and is considered to be a factor contributing to the complications of diabetes. A novel inhibitor of advanced glycation, OPB-9195, belongs to a group of thiazolidine derivatives, known as hypoglycemic drugs; however, they do not lower blood glucose levels. We did studies to determine if OPB-9195 would prevent the progression of nephropathy in spontaneous diabetic rats. In vitro inhibitory effects of OPB-9195 on AGE formation and AGE-derived cross-linking were examined by enzyme-linked immunosorbent assay (ELISA) and SDS-PAGE, respectively. Otsuka-Long-Evans-Tokushima-Fatty (OLETF) rats, a model of NIDDM, were used to evaluate the therapeutic effect of OPB-9195. Light microscopic findings by periodic acid-Schiff (PAS) staining, the extent of AGE accumulation detected by immunohistochemical staining in the kidneys, the levels of serum AGEs by AGE-specific ELISA, and urinary albumin excretion were examined. OPB-9195 effectively inhibited both AGE-derived cross-linking and the formation of AGEs, in a dose-dependent manner in vitro. In addition, the administration of OPB-9195 prevented the progression of glomerular sclerosis and AGE deposition in glomeruli. Elevation of circulating AGE levels and urinary albumin excretion were dramatically prevented in rats, even at 56 weeks of age and with persistent hyperglycemia. We concluded that a novel thiazolidine derivative, OPB-9195, prevented the progression of diabetic glomerular sclerosis in OLETF rats by lowering serum levels of AGEs and attenuating AGE deposition in the glomeruli.

  • Received January 2, 1997.
  • Revision received February 25, 1997.
  • Accepted February 25, 1997.
  • Copyright © 1997 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

May 1997, 46(5)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Progression of Nephropathy in Spontaneous Diabetic Rats Is Prevented by OPB-9195, a Novel Inhibitor of Advanced Glycation
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Progression of Nephropathy in Spontaneous Diabetic Rats Is Prevented by OPB-9195, a Novel Inhibitor of Advanced Glycation
Sakurako Nakamura, Zenji Makita, Shintaro Ishikawa, Koichi Yasumura, Wataru Fujii, Katsuyuki Yanagisawa, Tetsuya Kawata, Takao Koike
Diabetes May 1997, 46 (5) 895-899; DOI: 10.2337/diab.46.5.895

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Progression of Nephropathy in Spontaneous Diabetic Rats Is Prevented by OPB-9195, a Novel Inhibitor of Advanced Glycation
Sakurako Nakamura, Zenji Makita, Shintaro Ishikawa, Koichi Yasumura, Wataru Fujii, Katsuyuki Yanagisawa, Tetsuya Kawata, Takao Koike
Diabetes May 1997, 46 (5) 895-899; DOI: 10.2337/diab.46.5.895
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Islet-Derived Fibroblast-Like Cells Are Not Derived via Epithelial-Mesenchymal Transition From Pdx-1 or Insulin-Positive Cells
  • Retinoic Acid Induces Pdx1-Positive Endoderm in Differentiating Mouse Embryonic Stem Cells
  • Antigen-Specific FoxP3-Transduced T-Cells Can Control Established Type 1 Diabetes
Show more Rapid Publications

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.