Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Rapid Publications

Development of Autoimmune Diabetes in NOD Mice Is Associated With the Formation of Peroxynitrite in Pancreatic Islet β-Cells

  1. Wilma L Suarez-Pinzon,
  2. Casaba Szabó and
  3. Alex Rabinovitch
  1. Department of Medicine (W.L.S.-R, A.R.), University of Alberta, Edmonton, Alberta, Canada; and the Children's Hospital Medical Center, Division of Critical Care (C.S.) Cincinnati, Ohio
  1. Address correspondence and reprint requests to Alex Rabinovitch, MD, 430 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2S2. ws3{at}gpu.srv.ualberta.ca.
Diabetes 1997 May; 46(5): 907-911. https://doi.org/10.2337/diab.46.5.907
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Peroxynitrite (ONOO−) is a highly reactive oxidant species produced by the reaction of the free radicals superoxide (O2·–) and nitric oxide (NO·). Here we report a marked increase in nitrotyrosine (NT), a marker of peroxynitrite, in islet cells from NOD mice developing spontaneous autoimmune diabetes. By using specific antibodies and immunohistochemical methods, we found that NT-positive cells were significantly more frequent in islets from acutely diabetic NOD mice (22 ± 6%) than in islets from normoglycemic NOD mice (7 ± 1%) and control BALB/c mice (2 ± 1%). The NT+ cells in islets were identified to be macrophages and also β-cells. Most of the β-cells in islets from acutely diabetic NOD mice were NT+ (73 ± 8%), whereas significantly fewer β-cells were NT+ in islets from normoglycemic NOD mice (18 ± 4%) and BALB/c mice (5 ± 1%). Also, the percentage of β-cells in islets from NOD mice (normoglycemic and diabetic) correlated inversely with the frequency of NT+ β-cells. This study demonstrates for the first time that peroxynitrite, a reaction product of superoxide and nitric oxide, is formed in pancreatic islet β-cells of NOD mice developing autoimmune diabetes. This suggests that both oxygen and nitrogen free radicals contribute to β-cell destruction in IDDM via peroxynitrite formation in the islet β-cells.

  • Received January 29, 1997.
  • Revision received February 19, 1997.
  • Accepted February 19, 1997.
  • Copyright © 1997 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

May 1997, 46(5)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Development of Autoimmune Diabetes in NOD Mice Is Associated With the Formation of Peroxynitrite in Pancreatic Islet β-Cells
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Development of Autoimmune Diabetes in NOD Mice Is Associated With the Formation of Peroxynitrite in Pancreatic Islet β-Cells
Wilma L Suarez-Pinzon, Casaba Szabó, Alex Rabinovitch
Diabetes May 1997, 46 (5) 907-911; DOI: 10.2337/diab.46.5.907

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Development of Autoimmune Diabetes in NOD Mice Is Associated With the Formation of Peroxynitrite in Pancreatic Islet β-Cells
Wilma L Suarez-Pinzon, Casaba Szabó, Alex Rabinovitch
Diabetes May 1997, 46 (5) 907-911; DOI: 10.2337/diab.46.5.907
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Islet-Derived Fibroblast-Like Cells Are Not Derived via Epithelial-Mesenchymal Transition From Pdx-1 or Insulin-Positive Cells
  • Retinoic Acid Induces Pdx1-Positive Endoderm in Differentiating Mouse Embryonic Stem Cells
  • Antigen-Specific FoxP3-Transduced T-Cells Can Control Established Type 1 Diabetes
Show more Rapid Publications

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.