Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Articles

The Roles of Oxidative Stress and Antioxidant Treatment in Experimental Diabetic Neuropathy

  1. Phillip A Low,
  2. Kim K Nickander and
  3. Hans J Tritschler
  1. Department of Neurology, Mayo Clinic and Mayo Foundation Rochester, Minnesota
  2. Asta Medica Frankfurt, Germany
  1. Address correspondence and reprint requests to Dr. Phillip A. Low, Department of Neurology, Mayo Clinic and Mayo Foundation, Rochester, MN 55905
Diabetes 1997 Sep; 46(Supplement 2): S38-S42. https://doi.org/10.2337/diab.46.2.S38
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Oxidative stress is present in the diabetic state. Our work has focused on its presence in peripheral nerves. Antioxidant enzymes are reduced in peripheral nerves and are further reduced in diabetic nerves. That lipid peroxidation will cause neuropathy is supported by evidence of the development of neuropathy de novo when normal nerves are rendered α-tocopherol deficient and by the augmentation of the conduction deficit in diabetic nerves subjected to this insult. Oxidative stress appears to be primarily due to the processes of nerve ischemia and hyperglycemia auto-oxidation. The indexes of oxidative stress include an increase in nerve, dorsal root, and sympathetic ganglia lipid hydroperoxides and conjugated dienes. The most reliable and sensitive index, however, is a reduction in reduced glutathione. Experimental diabetic neuropathy results in myelinopathy of dorsal roots and a vacuolar neuropathy of dorsal root ganglion. The vacuoles are mitochondrial; we posit that lipid peroxidation causes mitochondrial DNA mutations that increase reduced oxygen species, causing further damage to mitochondrial respiratory chain and function and resulting in a sensory neuropathy, α-lipoic acid is a potent antioxidant that prevents lipid peroxidation in vitro and in vivo. We evaluated the efficacy of the drug in doses of 20, 50, and 100 mg/kg administered intraperitoneally in preventing the biochemical, electrophysiological, and nerve blood flow deficits in the peripheral nerves of experimental diabetic neuropathy, α-lipoic acid dose- and time-dependently prevented the deficits in nerve conduction and nerve blood flow and biochemical abnormalities (reductions in reduced glutathione and lipid peroxidation). The nerve blood flow deficit was 50% (P < 0.001). Supplementation dose-dependently prevented the deficit; at the highest concentration, nerve blood flow was not different from that of control nerves. Digital nerve conduction underwent a dose-dependent improvement at 1 month (P < 0.05). By 3 months, all treated groups had lost their deficit. The antioxidant drug is potentially efficacious for human diabetic sensory neuropathy.

  • Accepted December 19, 1996.
  • Copyright © 1997 by the American Diabetes Association

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this Issue

September 1997, 46(Supplement 2)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Roles of Oxidative Stress and Antioxidant Treatment in Experimental Diabetic Neuropathy
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Roles of Oxidative Stress and Antioxidant Treatment in Experimental Diabetic Neuropathy
Phillip A Low, Kim K Nickander, Hans J Tritschler
Diabetes Sep 1997, 46 (Supplement 2) S38-S42; DOI: 10.2337/diab.46.2.S38

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

The Roles of Oxidative Stress and Antioxidant Treatment in Experimental Diabetic Neuropathy
Phillip A Low, Kim K Nickander, Hans J Tritschler
Diabetes Sep 1997, 46 (Supplement 2) S38-S42; DOI: 10.2337/diab.46.2.S38
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabolic and Vascular Factors in the Pathogenesis of Diabetic Neuropathy
  • The Role of Nutritional Modifications in the Prevention of Macrovascular Complications of Diabetes
  • Essential Fatty Acids in the Management of Impaired Nerve Function in Diabetes
Show more Articles

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.