Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans.

  1. C Weyer,
  2. P A Tataranni,
  3. S Snitker,
  4. E Danforth, Jr and
  5. E Ravussin
  1. Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016, USA. cweyer@phx.niddk.nih.gov
    Diabetes 1998 Oct; 47(10): 1555-1561. https://doi.org/10.2337/diabetes.47.10.1555
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Stimulation of beta3-adrenoceptors by selective agonists improves insulin action and stimulates energy metabolism in various rodent models of obesity and type 2 diabetes. Whether selective beta3-adrenoceptor stimulation exerts metabolic actions in humans remains to be proven. The effects of a highly selective beta3-adrenoceptor agonist on insulin action, energy metabolism, and body composition were assessed in 14 healthy young lean male volunteers (age 22.5 +/- 3.3 years, 15 +/- 5% body fat [mean +/- SD]) randomly assigned to 8 weeks of treatment with either 1,500 mg/day of CL 316,243 (n = 10) or placebo (n = 4). Insulin-mediated glucose disposal (IMGD), nonoxidative glucose disposal (NOGD), oxidative glucose disposal (OGD) (indirect calorimetry), and splanchnic glucose output (SGO; beta3-[H3]glucose) were determined during a 100-min hyperinsulinemic-euglycemic glucose clamp (40 mU x m(-2) x min(-1)) before and after 4 and 8 weeks of treatment. The 24-h energy expenditure (24-EE), 24-h respiratory quotient (24-RQ), and the oxidation rates of fat and carbohydrate were determined in a respiratory chamber before and after 8 weeks. After 4 weeks, treatment with CL 316,243 increased IMGD (+45%, P < 0.01) in a plasma concentration-dependent manner (r = 0.76, P < 0.02). This effect was due to an 82% increase in NOGD (P < 0.01), while OGD and SGO remained unchanged. The effects on insulin action were markedly diminished after 8 weeks; this was significantly related to an unexpected decline in the plasma concentrations of CL 316,243 (-36%, P = 0.08). At this time, 24-RQ was lowered (P < 0.001), corresponding to a 23% increase in fat oxidation (P < 0.01) and a 17% decrease in carbohydrate oxidation (P = 0.05). The 24-EE after 8 weeks did not differ from baseline, and there was no change in body weight or body composition. Plasma concentrations of glucose, insulin, and leptin were unaffected by treatment, while free fatty acid concentrations increased by 41% (P < 0.05), again linearly with the achieved plasma concentration of CL 316,243 (r = 0.67, P < 0.05). Treatment with CL 316,243 had no effect on heart rate or blood pressure and caused no cases of tremors. We conclude that treatment of lean male subjects with CL 316,243 increases insulin action and fat oxidation, both in a plasma concentration-dependent manner. This is the first study to demonstrate unequivocal metabolic effects of a highly selective beta3-adrenoceptor agonist in humans.

    Log in using your username and password

    Forgot your user name or password?

    Purchase access

    You may purchase access to this article. This will require you to create an account if you don't already have one.
    PreviousNext
    Back to top

    In this Issue

    October 1998, 47(10)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans.
    C Weyer, P A Tataranni, S Snitker, E Danforth, E Ravussin
    Diabetes Oct 1998, 47 (10) 1555-1561; DOI: 10.2337/diabetes.47.10.1555

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans.
    C Weyer, P A Tataranni, S Snitker, E Danforth, E Ravussin
    Diabetes Oct 1998, 47 (10) 1555-1561; DOI: 10.2337/diabetes.47.10.1555
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.