Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Sulfonylureas enhance exocytosis from pancreatic beta-cells by a mechanism that does not involve direct activation of protein kinase C.

  1. Y A Tian,
  2. G Johnson and
  3. S J Ashcroft
  1. Nuffield Department of Clinical Biochemistry, John Radcliffe Hospital, Headington, Oxford, UK.
    Diabetes 1998 Nov; 47(11): 1722-1726. https://doi.org/10.2337/diabetes.47.11.1722
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Hypoglycemic sulfonylureas stimulate insulin release by binding to a regulatory subunit of plasma membrane ATP-sensitive K+ (K(ATP)) channels. The consequent closure of K(ATP) channels leads to depolarization, opening of voltage-dependent Ca2+ channels, Ca2+ influx, and a rise in intracellular [Ca2+]. Recently, however, it has been suggested that sulfonylureas may have an additional action on secretion, independent of changes in intracellular [Ca2+] but dependent on the activity of protein kinase C (PKC). We have investigated the mechanisms involved in the PKC-dependent effect of sulfonylureas on the secretion machinery in beta-cells. In MIN6 beta-cells permeabilized by streptolysin O, insulin release was stimulated by elevation of [Ca2+] from 10(-8) to 10(-5) mol/l. At a [Ca2+] of 10(-8) mol/l, insulin release from permeabilized beta-cells was stimulated by addition of GTP-gamma-S, or by addition of a phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA, but not GTP-gamma-S, also increased insulin release when [Ca2+] was 10(-5) mol/l. Insulin release from permeabilized beta-cells was stimulated by tolbutamide (0.1-1 mmol/l) at 10(-8) but not at 10(-5) mol/l Ca2+. The effect of tolbutamide was blocked either by inhibition of PKC or when phorbol ester-sensitive PKC isoforms were maximally stimulated by TPA. Meglitinide and glibenclamide also stimulated insulin release from permeabilized beta-cells. To assess the possibility that direct activation of PKC mediates the exocytotic response to sulfonylureas, we studied the effect of tolbutamide and glibenclamide on PKC activity. Purified brain PKC was not activated by tolbutamide or glibenclamide, whether tested in the absence or presence of phosphatidylserine or TPA, or at low or high [Ca2+]; nor was the total PKC activity in extracts of MIN6 beta-cells affected by tolbutamide. Neither tolbutamide nor glibenclamide elicited translocation of any isoform of PKC in intact or permeabilized beta-cells under conditions in which TPA evoked a marked redistribution of PKC alpha- and epsilon-isoforms. We conclude that although the plasma membrane K(ATP) channel-independent stimulation of exocytosis by sulfonylureas may require functional PKC, the mechanism does not involve a direct activation of the enzyme.

    PreviousNext
    Back to top

    In this Issue

    November 1998, 47(11)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Sulfonylureas enhance exocytosis from pancreatic beta-cells by a mechanism that does not involve direct activation of protein kinase C.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Sulfonylureas enhance exocytosis from pancreatic beta-cells by a mechanism that does not involve direct activation of protein kinase C.
    Y A Tian, G Johnson, S J Ashcroft
    Diabetes Nov 1998, 47 (11) 1722-1726; DOI: 10.2337/diabetes.47.11.1722

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Sulfonylureas enhance exocytosis from pancreatic beta-cells by a mechanism that does not involve direct activation of protein kinase C.
    Y A Tian, G Johnson, S J Ashcroft
    Diabetes Nov 1998, 47 (11) 1722-1726; DOI: 10.2337/diabetes.47.11.1722
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.