Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes.

  1. A Benigni,
  2. V Colosio,
  3. C Brena,
  4. I Bruzzi,
  5. T Bertani and
  6. G Remuzzi
  1. Mario Negri Institute for Pharmacological Research, Ospedali Riuniti di Bergamo, Italy.
    Diabetes 1998 Mar; 47(3): 450-456. https://doi.org/10.2337/diabetes.47.3.450
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Chronic nephropathies are associated with enhanced renal synthesis of endothelin (ET)-1. A recent study demonstrated that an ET(A) receptor antagonist given to diabetic rats at the moment of disease induction prevented the development of renal injury. Here we investigated whether an unselective ET(A)/ET(B) receptor antagonist, PD 142,893, was renoprotective when given to streptozotocin diabetic rats when animals were already proteinuric. The effect of PD 142,893 was compared with that of an ACE inhibitor, lisinopril, known to retard progressive renal disease in experimental and human diabetes. PD 142,893 normalized systemic blood pressure, reduced urinary protein and albumin excretion, and ameliorated renal blood flow in diabetic rats, but it did not affect such parameters in control rats. Lisinopril had a renoprotective effect comparable to PD 142,893, although lisinopril controlled systemic blood pressure better. Northern blot analysis of ET-1 mRNA revealed upregulation of ET-1 gene in the diabetic kidney. Similar results were obtained by in situ hybridization in glomeruli and tubuli of diabetic rats. Both treatments remarkably attenuated exaggerated renal ET-1 gene expression. These data suggest that ET-1 is a contributory mediator of kidney damage in diabetes and indicate that ET receptor antagonists may represent a new therapeutic mean for treatment of progressive diabetic nephropathy.

    Log in using your username and password

    Forgot your user name or password?

    Purchase access

    You may purchase access to this article. This will require you to create an account if you don't already have one.
    PreviousNext
    Back to top

    In this Issue

    March 1998, 47(3)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes.
    A Benigni, V Colosio, C Brena, I Bruzzi, T Bertani, G Remuzzi
    Diabetes Mar 1998, 47 (3) 450-456; DOI: 10.2337/diabetes.47.3.450

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes.
    A Benigni, V Colosio, C Brena, I Bruzzi, T Bertani, G Remuzzi
    Diabetes Mar 1998, 47 (3) 450-456; DOI: 10.2337/diabetes.47.3.450
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.