Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones.

  1. S C Souza,
  2. M T Yamamoto,
  3. M D Franciosa,
  4. P Lien and
  5. A S Greenberg
  1. Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA.
    Diabetes 1998 Apr; 47(4): 691-695. https://doi.org/10.2337/diabetes.47.4.691
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Thiazolidinediones (TZDs) such as BRL 49653 are a class of antidiabetic agents that are agonists for the peroxisome proliferator-activated nuclear receptor (PPAR-gamma2). In vivo, TZDs reduce circulating levels of free fatty acids (FFAs) and ameliorate insulin resistance in individuals with obesity and NIDDM. Adipocyte production of TNF-alpha is proposed to play a role in the development of insulin resistance, and because BRL 49653 has been shown to antagonize some of the effects of TNF-alpha, we examined the effects of TNF-alpha and BRL 49653 on adipocyte lipolysis. After a 24-h incubation of TNF-alpha (10 ng/ml) with 3T3-L1 adipocytes, glycerol release increased by approximately 7-fold, and FFA release increased by approximately 44-fold. BRL 49653 (10 pmol/l) reduced TNF-alpha-induced glycerol release by approximately 50% (P < 0.001) and FFA release by approximately 90% (P < 0.001). BRL 49653 also reduced glycerol release by approximately 50% in adipocytes pretreated for 24 h with TNF-alpha. Prolonged treatment (5 days) with either BRL 49653 or another PPAR-gamma2 agonist, 15-d delta-12,14-prostaglandin J2 (15-d deltaPGJ2), blocked TNF-alpha-induced glycerol release by approximately 100%. Catecholamine (isoproterenol)-stimulated lipolysis was unaffected by BRL 49653 and 15-d deltaPGJ2. BRL 49653 partially blocked the TNF-alpha-mediated reduction in protein levels of hormone-sensitive lipase and perilipin A, two proteins involved in adipocyte lipolysis. These data suggest a novel pathway that may contribute to the ability of the TZDs to reduce serum FFA and increase insulin sensitivity.

    PreviousNext
    Back to top

    In this Issue

    April 1998, 47(4)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones.
    S C Souza, M T Yamamoto, M D Franciosa, P Lien, A S Greenberg
    Diabetes Apr 1998, 47 (4) 691-695; DOI: 10.2337/diabetes.47.4.691

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones.
    S C Souza, M T Yamamoto, M D Franciosa, P Lien, A S Greenberg
    Diabetes Apr 1998, 47 (4) 691-695; DOI: 10.2337/diabetes.47.4.691
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.