Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Interleukin-4 Deficiency Does Not Exacerbate Disease in NOD Mice

  1. Bo Wang,
  2. Antonio Gonzalez,
  3. Petter Höglund,
  4. Jonathan D Katz,
  5. Christophe Benoist and
  6. Diane Mathis
  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, C.U. de Strasbourg Strasbourg, France
  1. Address correspondence and reprint requests to Drs. Diane Mathis and Christophe Benoist, IGBMC, BP 163, 67404 Illkirch Cedex, CU.de Strasbourg, France. E-mail: cbdm{at}igbmc.u-strasbg.fr
Diabetes 1998 Aug; 47(8): 1207-1211. https://doi.org/10.2337/diab.47.8.1207
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

To investigate the role of interleukin (IL)-4 in the regulation of autoimmune diabetes, we crossed the IL-4 knock-out mutation onto the NOD genetic background. This experiment was accelerated by typing for microsatellites linked to known diabetes susceptibility (Idd) loci, and included a control backcross of the wildtype 129/SvJ-derived IL-4 gene, the original target locus. We also crossed the mutation into the BDC2.5 transgenic line, a diabetes model that carries the rearranged T-cell receptor genes from a diabetogenic Tcell clone. The IL-4-null mutation did not accelerate or intensify insulitis in regular NOD mice or in the BDC2.5 transgenic model; it also had no effect on the timing or frequency of the transition to overt diabetes. These data indicate that IL-4 plays no required role in controlling the aggressiveness of murine diabetes.

  • Copyright © 1998 by the American Diabetes Association

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this Issue

August 1998, 47(8)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Interleukin-4 Deficiency Does Not Exacerbate Disease in NOD Mice
(Your Name) has forwarded a page to you from Diabetes
(Your Name) thought you would like to see this page from the Diabetes web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Interleukin-4 Deficiency Does Not Exacerbate Disease in NOD Mice
Bo Wang, Antonio Gonzalez, Petter Höglund, Jonathan D Katz, Christophe Benoist, Diane Mathis
Diabetes Aug 1998, 47 (8) 1207-1211; DOI: 10.2337/diab.47.8.1207

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Interleukin-4 Deficiency Does Not Exacerbate Disease in NOD Mice
Bo Wang, Antonio Gonzalez, Petter Höglund, Jonathan D Katz, Christophe Benoist, Diane Mathis
Diabetes Aug 1998, 47 (8) 1207-1211; DOI: 10.2337/diab.47.8.1207
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

Original Articles

  • Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier Through Differential Regulation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas
  • Improved Glucose Tolerance in Zucker Fatty Rats by Oral Administration of the Dipeptidyl Peptidase IV Inhibitor Isoleucine Thiazolidide
  • Fibronectin Fragments Modulate Human Retinal Capillary Cell Proliferation and Migration
Show more Original Articles

Immunology and Transplantation

  • One in Ten CD8+ Cells in the Pancreas of Living Individuals With Recent-Onset Type 1 Diabetes Recognizes the Preproinsulin Epitope PPI15-24
  • Peptidylarginine Deiminase Inhibition Prevents Diabetes Development in NOD Mice
  • Differentiating MHC-Dependent and -Independent Mechanisms of Lymph Node Stromal Cell Regulation of Proinsulin-Specific CD8+ T Cells in Type 1 Diabetes
Show more Immunology and Transplantation

Similar Articles

Navigate

  • Current Issue
  • Online Ahead of Print
  • Scientific Sessions Abstracts
  • Collections
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes Care
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.