Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Mice expressing human but not murine beta3-adrenergic receptors under the control of human gene regulatory elements.

  1. M Ito,
  2. D Grujic,
  3. E D Abel,
  4. A Vidal-Puig,
  5. V S Susulic,
  6. J Lawitts,
  7. M E Harper,
  8. J Himms-Hagen,
  9. A D Strosberg and
  10. B B Lowell
  1. Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
    Diabetes 1998 Sep; 47(9): 1464-1471. https://doi.org/10.2337/diabetes.47.9.1464
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Beta-adrenergic receptors (ARs) are expressed predominantly in adipose tissue, and beta3-selective agonists are effective anti-obesity drugs in rodents. Rodent and human beta3-ARs differ with respect to expression in white versus brown adipocytes as well as their ability to be stimulated by beta3-AR-selective agonists. Humans express beta3-AR mRNA abundantly in brown but not white adipocytes, while rodents express beta3-AR mRNA abundantly in both sites. To determine the basis for this difference, we have transgenically introduced 74 kilobases (kb) of human beta3-AR genomic sequence into gene knockout mice lacking beta3-ARs. Importantly, human beta3-AR mRNA was expressed only in brown adipose tissue (BAT) of transgenic mice, with little or no expression being detected in white adipose tissue (WAT), liver, stomach, small intestine, skeletal muscle, and heart. This pattern of expression differed from that observed in mice bearing a murine beta3-AR genomic transgene in which beta3-AR mRNA was expressed in both WAT and BAT, but not in other sites. Furthermore, we have transgenically introduced smaller human constructs containing -14.5 and -0.6 kb of upstream sequence into beta3-AR gene knockout mice. Both -14.5 and -0.6 kb constructs were expressed in BAT but not WAT. Thus, human but not murine cis-regulatory elements direct beta3-AR gene expression preferentially to brown adipocytes. Identification of responsible cis-regulatory element(s) and relevant trans-acting factor(s) should provide insight into mechanisms controlling human beta3-AR gene expression. In addition, the beta3-AR agonist, CGP-12177, stimulated oxygen consumption in mice expressing human but not murine beta3-ARs by 91% compared with only 49% in control beta3-AR gene knockout mice, demonstrating that the human beta3-AR can functionally couple with energy expenditure. These "humanized" mice should assist us in the development of drugs that may become effective anti-obesity agents in humans.

    Log in using your username and password

    Forgot your user name or password?

    Purchase access

    You may purchase access to this article. This will require you to create an account if you don't already have one.
    PreviousNext
    Back to top

    In this Issue

    September 1998, 47(9)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Mice expressing human but not murine beta3-adrenergic receptors under the control of human gene regulatory elements.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Mice expressing human but not murine beta3-adrenergic receptors under the control of human gene regulatory elements.
    M Ito, D Grujic, E D Abel, A Vidal-Puig, V S Susulic, J Lawitts, M E Harper, J Himms-Hagen, A D Strosberg, B B Lowell
    Diabetes Sep 1998, 47 (9) 1464-1471; DOI: 10.2337/diabetes.47.9.1464

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Mice expressing human but not murine beta3-adrenergic receptors under the control of human gene regulatory elements.
    M Ito, D Grujic, E D Abel, A Vidal-Puig, V S Susulic, J Lawitts, M E Harper, J Himms-Hagen, A D Strosberg, B B Lowell
    Diabetes Sep 1998, 47 (9) 1464-1471; DOI: 10.2337/diabetes.47.9.1464
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.