Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Role of oxidative stress in diabetic complications: a new perspective on an old paradigm.

  1. J W Baynes and
  2. S R Thorpe
  1. Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, USA. baynes@psc.sc.edu
    Diabetes 1999 Jan; 48(1): 1-9. https://doi.org/10.2337/diabetes.48.1.1
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    Oxidative stress and oxidative damage to tissues are common end points of chronic diseases, such as atherosclerosis, diabetes, and rheumatoid arthritis. The question addressed in this review is whether increased oxidative stress has a primary role in the pathogenesis of diabetic complications or whether it is a secondary indicator of end-stage tissue damage in diabetes. The increase in glycoxidation and lipoxidation products in plasma and tissue proteins suggests that oxidative stress is increased in diabetes. However, some of these products, such as 3-deoxyglucosone adducts to lysine and arginine residues, are formed independent of oxidation chemistry. Elevated levels of oxidizable substrates may also explain the increase in glycoxidation and lipoxidation products in tissue proteins, without the necessity of invoking an increase in oxidative stress. Further, age-adjusted levels of oxidized amino acids, a more direct indicator of oxidative stress, are not increased in skin collagen in diabetes. We propose that the increased chemical modification of proteins by carbohydrates and lipids in diabetes is the result of overload on metabolic pathways involved in detoxification of reactive carbonyl species, leading to a general increase in steady-state levels of reactive carbonyl compounds formed by both oxidative and nonoxidative reactions. The increase in glycoxidation and lipoxidation of tissue proteins in diabetes may therefore be viewed as the result of increased carbonyl stress. The distinction between oxidative and carbonyl stress is discussed along with the therapeutic implications of this difference.

    PreviousNext
    Back to top

    In this Issue

    January 1999, 48(1)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Role of oxidative stress in diabetic complications: a new perspective on an old paradigm.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Role of oxidative stress in diabetic complications: a new perspective on an old paradigm.
    J W Baynes, S R Thorpe
    Diabetes Jan 1999, 48 (1) 1-9; DOI: 10.2337/diabetes.48.1.1

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Role of oxidative stress in diabetic complications: a new perspective on an old paradigm.
    J W Baynes, S R Thorpe
    Diabetes Jan 1999, 48 (1) 1-9; DOI: 10.2337/diabetes.48.1.1
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.