Skip to main content
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care in Diabetes
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Scientific Sessions Abstracts
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • ADA Scientific Sessions Abstracts
    • Diabetes COVID-19 Article Collection
    • Diabetes Symposium 2020
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • EĀ­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • ADA Journal Policies
    • Instructions for Authors
    • ADA Peer Review

Beta-cell destruction in NOD mice correlates with Fas (CD95) expression on beta-cells and proinflammatory cytokine expression in islets.

  1. W Suarez-Pinzon,
  2. O Sorensen,
  3. R C Bleackley,
  4. J F Elliott,
  5. R V Rajotte and
  6. A Rabinovitch
  1. Department of Medicine, University of Alberta, Edmonton, Canada.
    Diabetes 1999 Jan; 48(1): 21-28. https://doi.org/10.2337/diabetes.48.1.21
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    A mechanism of autoimmune destruction of islet beta-cells in type 1 diabetes has been proposed to be the binding of Fas ligand (FasL) on T-cells to Fas receptors on beta-cells. We investigated this proposal by examining the expression of FasL and Fas on islet-infiltrating T-cells and beta-cells in relation to beta-cell destruction in a syngeneic islet transplant model in NOD mice. Diabetic NOD mice were transplanted with syngeneic islets and injected with complete Freund's adjuvant, which prevented diabetes recurrence (nondestructive insulitis), and with phosphate-buffered saline, which did not (beta-cell destructive insulitis). Two-color immunohistochemical assays revealed that FasL was expressed on CD4+ T-cells, CD8+ T-cells, and beta-cells in islet grafts from both diabetic and normoglycemic mice, and the percentage of each type of cell that expressed FasL was greater in islet grafts from normoglycemic compared with diabetic mice. In contrast, Fas was expressed on CD4+ T-cells, CD8+ T-cells, and beta-cells in islet grafts from diabetic mice, but it was nearly or totally absent on these cells in islet grafts from normoglycemic mice. Similarly, polymerase chain reaction analysis of islet grafts revealed that Fas mRNA expression was significantly lower in islet grafts from normoglycemic compared with diabetic mice. Also, mRNA levels of interleukin (IL)-1alpha, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma were significantly lower in islet grafts from normoglycemic mice. Finally, Fas was induced on NOD islet cells by incubation with IL-1beta, IFN-gamma, and the combination of IL-1beta, TNF-alpha, and IFN-gamma. These findings support the concept that cytokine-induced Fas receptor expression on islet beta-cells is a mechanism for their destruction by FasL-expressing CD4+ and CD8+ T-cells and, possibly, by FasL-expressing beta-cells themselves.

    Log in using your username and password

    Forgot your user name or password?

    Purchase access

    You may purchase access to this article. This will require you to create an account if you don't already have one.
    PreviousNext
    Back to top

    In this Issue

    January 1999, 48(1)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Beta-cell destruction in NOD mice correlates with Fas (CD95) expression on beta-cells and proinflammatory cytokine expression in islets.
    (Your Name) has forwarded a page to you from Diabetes
    (Your Name) thought you would like to see this page from the Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Beta-cell destruction in NOD mice correlates with Fas (CD95) expression on beta-cells and proinflammatory cytokine expression in islets.
    W Suarez-Pinzon, O Sorensen, R C Bleackley, J F Elliott, R V Rajotte, A Rabinovitch
    Diabetes Jan 1999, 48 (1) 21-28; DOI: 10.2337/diabetes.48.1.21

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Beta-cell destruction in NOD mice correlates with Fas (CD95) expression on beta-cells and proinflammatory cytokine expression in islets.
    W Suarez-Pinzon, O Sorensen, R C Bleackley, J F Elliott, R V Rajotte, A Rabinovitch
    Diabetes Jan 1999, 48 (1) 21-28; DOI: 10.2337/diabetes.48.1.21
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    Similar Articles

    Navigate

    • Current Issue
    • Online Ahead of Print
    • Scientific Sessions Abstracts
    • Collections
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes Care
    • Clinical Diabetes
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Diabetes Print ISSN: 0012-1797, Online ISSN: 1939-327X.